已知F1、F2分別是橢圓的左、右焦點(diǎn),其左準(zhǔn)線與x軸相交于點(diǎn)N,并且滿足.設(shè)A、B是上半橢圓上滿足的兩點(diǎn),其中

(Ⅰ)求此橢圓的方程及直線AB的斜率的取值范圍;

(Ⅱ)過A、B兩點(diǎn)分別作此橢圓的切線,兩切線相交于一點(diǎn)P,求證:點(diǎn)P在一條定直線上,并求點(diǎn)P的縱坐標(biāo)的取值范圍.

答案:
解析:

  解:(Ⅰ)由于

  

  從而所求橢圓的方程是 3分

  

  設(shè)直線AB的方程,其中k為直線AB的斜率,依條件知k>0.

  由

  根據(jù)條件可知 5分

  設(shè)

  又由 

   消去

  令

  由于上是減函數(shù).

  從而

  

  而,因此直線AB的斜率的取值范圍是 7分

  (Ⅱ)上半橢圓的方程為

  求導(dǎo)可得

  所以兩條切線的斜率分別為

   8分

  切線PA的方程是

  從而切線PA的方程為,

  同理可得切線PB的方程為 9分

  由

  再由

   11分

  又由(Ⅰ)知

  因此點(diǎn)P在定直線上,并且點(diǎn)P的縱坐標(biāo)的取值范圍是 12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
x25
+y2=1
的左、右焦點(diǎn)F1,F(xiàn)2關(guān)于直線x+y-2=0的對(duì)稱點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)過點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長(zhǎng)分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn),P為雙曲線右支上的一點(diǎn),
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點(diǎn),過點(diǎn)F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)F2的直線l交橢圓C于D,E兩點(diǎn),且2
DF2
=
F2E
,點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點(diǎn),P是雙曲線的上一點(diǎn),若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案