9.將函數(shù)y=$\sqrt{3}$cosx+sinx(x∈R)的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( 。
A.$\frac{π}{3}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,求得m的最小值

解答 解:將函數(shù)y=$\sqrt{3}$cosx+sinx=2sin(x+$\frac{π}{3}$)(x∈R)的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后得到y(tǒng)=2sin(x+m+$\frac{π}{3}$),所得到的圖象關(guān)于y軸對(duì)稱,則m+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,即m=kπ+$\frac{π}{6}$,
故m的最小值為$\frac{π}{6}$;
故選C

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中不是偶函數(shù)的是(  )
A.y=sin|x|B.y=-|sinx|C.y=cosx+1D.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則其表面積為(  )
A.18B.20C.22D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.將三項(xiàng)式(x2+x+1)n展開,當(dāng)n=1,2,3,…時(shí),得到如下所示的展開式,如圖所示的廣義楊輝三角形:
(x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
觀察多項(xiàng)式系數(shù)之間的關(guān)系,可以仿照楊輝三角形構(gòu)造如圖所示的廣義楊輝三角形,其構(gòu)造方法:第0行為1,以下各行每個(gè)數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計(jì)為0)之和,第k行共有2k+1個(gè)數(shù).若在(a+x)(x2+x+1)4的展開式中,x6項(xiàng)的系數(shù)為46,則實(shí)數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一幾何體由一個(gè)四棱錐和一個(gè)球組成,四棱錐的頂點(diǎn)都在球上,幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖完全相同,球的表面積是36π,四棱錐的體積為(  )
A.18B.9C.9$\sqrt{2}$D.18$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為豐富少兒文體活動(dòng),某學(xué)校從籃球,足球,排球,橄欖球中任選2種球給甲班學(xué)生使用,剩余的2種球給乙班學(xué)生使用,則籃球和足球不在同一班的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z1=2t+i,z2=1-2i,若$\frac{z_1}{z_2}$為實(shí)數(shù),則實(shí)數(shù)t的值是( 。
A.1B.-1C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={0,1,2,3,4},B={m|m=2n,n∈A},M={x∈R|x>2},則集合B∩∁RM={0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)全集U=R,集合A={x|x2-x-2>0},B={x|x2-3x-10<0},求∁UA,∁UB,A∩B,∁UA∪B.

查看答案和解析>>

同步練習(xí)冊(cè)答案