n件不同的產(chǎn)品排成一排,若其中A,B兩件產(chǎn)品排在一起的不同排法有48種,則n=________.

5

解析試題分析:兩件產(chǎn)品排在一起,常用的方法是捆綁法,先將A,B綁在一起看作一個(gè)元素,則問題轉(zhuǎn)化為n-1個(gè)元素的排列數(shù),令其值為48,解此方程求出n的值. 解:本問題的計(jì)數(shù)可以分為兩步完成,先將A,B兩元素捆綁,有A22=2種排法,第二步將AB兩元素看作是一個(gè)元素,與其余的元素組成n-1個(gè)元素,其排法為(n-1)!
由乘法原理知總的排法有2×(n-1)!,又總的排法有48種,故有(n-1)!=24,,∵4×3×2=24,∴n-1=4,即n=5,故答案為5
考點(diǎn):排列組合的運(yùn)用
點(diǎn)評(píng):本題考查排列組合及簡(jiǎn)單計(jì)數(shù)問題,解題的關(guān)鍵是理解本題中計(jì)數(shù)問題,找到合適的計(jì)數(shù)方法建立方程,熟練掌握排列公式以及分步乘法計(jì)數(shù)原理是解本題的知識(shí)保證,本題是計(jì)數(shù)原理的應(yīng)用題,其考查方法是利用計(jì)數(shù)原理建立方程求出n的值,是對(duì)排列與計(jì)數(shù)原理考查的一種變式題,注意總結(jié)此類題的解法規(guī)律

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

從4臺(tái)甲型筆記本電腦和5臺(tái)乙型筆記本電腦中任意選擇3臺(tái),其中至少要有甲型與乙型筆記本電腦各1臺(tái),則不同取法共有  ________種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

的展開式中恰好第5項(xiàng)的二項(xiàng)式系數(shù)最大,則它的常數(shù)項(xiàng)是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

展開式中的系數(shù)為­____­____。(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

展開式中二項(xiàng)式系數(shù)之和是1024,常數(shù)項(xiàng)為180,則實(shí)數(shù)的值是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

展開式中含的奇次項(xiàng)的系數(shù)和為                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

的展開式中的常數(shù)項(xiàng)為___ __.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知的展開式中第三項(xiàng)與第五項(xiàng)的系數(shù)之比為-,其中,則展開式中常數(shù)項(xiàng)是      。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

的展開式中項(xiàng)的系數(shù)為__________.  

查看答案和解析>>

同步練習(xí)冊(cè)答案