y=|x2-2x-3|與y=k有4個不同的交點,則k的范圍( 。
A、(-4,0)
B、[0,4]
C、[0,4)
D、(0,4)
考點:函數(shù)的零點與方程根的關系
專題:數(shù)形結合,函數(shù)的性質及應用
分析:做出y=|x2-2x-3|的圖象,即可得出結論.
解答: 解:y=|x2-2x-3|的圖象如圖所示,
∵y=|x2-2x-3|與y=k有4個不同的交點,
∴0<k<4,
故選:D.
點評:本題主要考查了絕對值函數(shù)的圖象的畫法,考查數(shù)形結合的數(shù)學思想,屬于基礎題,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸交于點M(M異于原點),f(x)在M處的切線與直線x-y+10=0平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知非零實數(shù)t,求函數(shù)y=tg(x)-f(x)+x2,x∈[1,e]的最小值;
(Ⅲ)令F(x)=g(x)+g′(x),給定x1,x2∈(1,+∞),x1<x2,對于兩個大于1的正數(shù)α,β,存在實數(shù)m滿足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,并且使得不等式|F(α)-F(β)|<|F(x1)-F(x2)|恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0),不等式f(x)<-2x的解集為{x|-3<x<-1}.若函數(shù)g(x)=f(x)+6a和x軸只有一個交點.
(1)求f(x)的解析式;
(2)當x∈[
5
2
,5]時,求函數(shù)y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

e1
e2
是非零且不共線向量,若向量8
e1
+t
e2
與向量t2
e1
+
e2
共線,則實數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-x2,x∈[-2,1],單調遞減區(qū)間為
 
,最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax(x<0)
(a-2)x+5a(x≥0)
滿足對任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2x|log
1
2
x
|-1的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx,x≥1
x2+2x+a,x<1
(a為常數(shù))的圖象在點A(1,0)處的切線與該函數(shù)的圖象恰好有三個公共點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)(ω>0,-
π
2
<ϕ<
π
2
)的部分圖象如圖所示,則f(x)=
 

查看答案和解析>>

同步練習冊答案