19.已知正數(shù)a,b滿足ab=2a+b+2.
(Ⅰ)求ab的最小值;
(Ⅱ)求a+2b的最小值.

分析 (Ⅰ)利用換元法,結(jié)合基本不等式,即可求ab的最小值;
(Ⅱ)化二元為一元,利用基本不等式求a+2b的最小值.

解答 解:(Ⅰ)$ab=2a+b+2≥2\sqrt{2ab}+2$,設(shè)$\sqrt{ab}=t$,所以${t^2}-2\sqrt{2}t-2≥0$,解得$t≥2+\sqrt{2}$,…(4分)
所以ab最小值為$6+4\sqrt{2}$,當(dāng)b=2a,即$a=\sqrt{2}+1$時取到.…(6分)
(Ⅱ)由題可得$b=\frac{2a+2}{a-1}(a>1)$,
所以$a+2b=a+\frac{4a+4}{a-1}=a-1+\frac{8}{a-1}+5≥4\sqrt{5}+5$,即a+2b最小值為$4\sqrt{5}+5$,…(10分)
當(dāng)$a-1=\frac{8}{a-1}$,即$a=2\sqrt{2}+1$時取到.…(12分)

點(diǎn)評 本題考查利用基本不等式求最值,考查學(xué)生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知全集U=A∪B={x是自然數(shù)|0≤x≤10},A∩(∁UB)={1,3,5,7},A∩B⊆{2,4},求集合A和B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)的定義域?yàn)椋?1,1),對任意x,y∈(-1,1),有f(x)+f(y)=f(${\frac{x+y}{1+xy}}$).
(1)驗(yàn)證函數(shù)f(x)=lg($\frac{1-x}{1+x}$)是否滿足這些條件;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)若f($\frac{a+b}{1+ab}$)=1,f($\frac{a-b}{1-ab}$)=2,且|a|<1,|b|<1,求f(a),f(b)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(1,t),$\overrightarrow$=(-2,1)滿足(2$\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$,則t=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\frac{1}{a-1}$,a+1,a2-1為等比數(shù)列,則a=( 。
A.0或-1B.-1C.0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)定點(diǎn)F1(0,-3),F(xiàn)2(0,3),動點(diǎn)P滿足條件|PF1|+|PF2|=m+$\frac{16}{m}$(其中常數(shù)m>0),則點(diǎn)P的軌跡是( 。
A.不存在B.橢圓或線段C.線段D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{4}$+$\frac{y^2}{2}$=1,點(diǎn)A在橢圓上(不是頂點(diǎn)),點(diǎn)A關(guān)于x軸、y軸、原點(diǎn)的對稱點(diǎn)分別為B、D、C,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在正四面體ABCD(正四面體是所有棱長都相等的四面體)中,棱長為2,E、F分別為BC、AD的中點(diǎn).
(Ⅰ)求$\overrightarrow{AE}•\overrightarrow{CF}$的值;
(Ⅱ)求二面角A-BC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,0),點(diǎn)B(0,2),點(diǎn)$C(-\sqrt{3},-1)$.
(1)求經(jīng)過A,B,C三點(diǎn)的圓P的方程;
(2)過直線y=x-4上一點(diǎn)Q,作圓P的兩條切線,切點(diǎn)分別為A,B,求證:直線AB恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案