( 10分)已知雙曲線的左、右焦點(diǎn)分別為,,過點(diǎn)的動直線與雙曲線相交于兩點(diǎn).
(I)若動點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),求點(diǎn)的軌跡方程;
(II)在軸上是否存在定點(diǎn),使·為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);
若不存在,請說明理由.
解:由條件知,,設(shè),.
解法一:(I)設(shè),則,,
,由得
即 于是的中點(diǎn)坐標(biāo)為.
當(dāng)不與軸垂直時,,即.
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052207465443759002/SYS201205220749032031986338_DA.files/image017.png">兩點(diǎn)在雙曲線上,所以,,兩式相減得
,即.
將代入上式,化簡得.
當(dāng)與軸垂直時,,求得,也滿足上述方程.
所以點(diǎn)的軌跡方程是.
(II)假設(shè)在軸上存在定點(diǎn),使為常數(shù).
當(dāng)不與軸垂直時,設(shè)直線的方程是.
代入有.
則是上述方程的兩個實(shí)根,所以,,
于是
.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052207465443759002/SYS201205220749032031986338_DA.files/image025.png">是與無關(guān)的常數(shù),所以,即,此時=.
當(dāng)與軸垂直時,點(diǎn)的坐標(biāo)可分別設(shè)為,,
此時.
故在軸上存在定點(diǎn),使為常數(shù).
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).
(1)求雙曲線C的方程;
(2)若A、B分別是雙曲C上兩條漸近線上的動點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說明該軌跡是什么曲線。
(3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足,當(dāng)點(diǎn)P在曲線C上運(yùn)動時,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com