12.若三棱錐P-ABC的四個頂點(diǎn)在同一個球面上,PA⊥平面ABC,AB⊥BC,且PA=AB=BC=$\sqrt{2}$,則該球的體積等于(  )
A.$\sqrt{6}$πB.2$\sqrt{2}$πC.D.

分析 畫出圖形,把三棱錐擴(kuò)展為正方體,三棱錐的外接球就是正方體的外接球,正方體的體對角線就是球的直徑,即可求出該球的體積.

解答 解:由題意畫出圖形如圖,因為三棱錐P-ABC的頂點(diǎn)都在球O的球面上,
PA⊥平面ABC,AB⊥BC,且PA=AB=BC=$\sqrt{2}$,
所以三棱錐擴(kuò)展為正方體,正方體的對角線的長為:PC=$\sqrt{6}$,
所以所求球的半徑為$\frac{\sqrt{6}}{2}$,
所以球的體積V=$\frac{4}{3}π•(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π.
故選:A.

點(diǎn)評 本題考查直線與平面垂直的性質(zhì),球的內(nèi)接幾何體與球的關(guān)系,考查空間想象能力,計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x-1+$\frac{a}{{e}^{x}}$(x∈R,e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的極值;
(2)當(dāng)a=1時,若直線l:y=kx-1與曲線y=f(x)沒有公共點(diǎn),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC中∠A=90°,AB=2,AC=3,設(shè)P、Q滿足$\overline{AP}=λ\overline{AB},\overline{AQ}=(1-λ)\overline{AC},λ∈R$,若$\overline{BQ}•\overline{CP}=1$,則λ=( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.$\int_{-2}^2{{e^{|x|}}}$dx=(  )
A.e2+1B.2e2-1C.2e2-2D.e2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=ax-x2-lnx,若函數(shù)f(x)存在極值,且所有極值之和小于5+ln2,則實數(shù)a的取值范圍是(2$\sqrt{2}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線mx+y-4=0與直線x-my-4=0相交于點(diǎn)P,則P到點(diǎn)Q(5,5)的距離|PQ|的取值范圍是[$\sqrt{2}$,5$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知θ∈[0,$\frac{π}{2}}$],直線xsinθ+ycosθ-1=0和圓C:(x-1)2+(y-cosθ)2=$\frac{1}{4}$相交所得的弦長為$\frac{{\sqrt{3}}}{2}$,則θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知x+2y=6,則2x+4y的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式x>$\frac{1}{x}$的解集為( 。
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

同步練習(xí)冊答案