已知點(diǎn)P是圓x2+y2=4上一動(dòng)點(diǎn),定點(diǎn)Q(4,0).
(1)求線段PQ中點(diǎn)的軌跡方程;
(2)設(shè)∠POQ的平分線交PQ于R,求R點(diǎn)的軌跡方程.
【答案】分析:(1)設(shè)PQ中點(diǎn)M(x,y),則P(2x-4,2y),代入圓的方程即得線段PQ中點(diǎn)的軌跡方程.
(2)設(shè)R(x,y),由三角形角平分線性質(zhì)得出一個(gè)比例式,再設(shè)P(m,n),得出關(guān)于m,n與x,y的關(guān)系式,代入x2+y2=4中,即得R點(diǎn)的軌跡方程.
解答:解:(1)設(shè)PQ中點(diǎn)M(x,y),則P(2x-4,2y),代入圓的方程得(x-2)2+y2=1.
(2)設(shè)R(x,y),由==,
設(shè)P(m,n),則有m=,n=,
代入x2+y2=4中,得
(x-2+y2=(y≠0).
點(diǎn)評(píng):求曲線的軌跡方程常采用的方法有直接法、定義法、相關(guān)點(diǎn)代入法、參數(shù)法,本題主要是利用直接法和相關(guān)點(diǎn)代入法,直接法是將動(dòng)點(diǎn)滿足的幾何條件或者等量關(guān)系,直接坐標(biāo)化,列出等式化簡(jiǎn)即得動(dòng)點(diǎn)軌跡方程.相關(guān)點(diǎn)代入法  根據(jù)相關(guān)點(diǎn)所滿足的方程,通過(guò)轉(zhuǎn)換而求動(dòng)點(diǎn)的軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓x2+y2=1上一動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
QM
QP
(λ為非零常數(shù))的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若存在過(guò)點(diǎn)N(
1
2
,0)
的直線l與曲線C相交于A、B兩點(diǎn),且
OA
OB
=0(O為坐標(biāo)原點(diǎn)),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
QM
=2
QP
的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓x2+y2=1上任意一點(diǎn),過(guò)點(diǎn)P作y軸的垂線,垂足為Q,點(diǎn)R滿足
RQ
=
3
PQ
,記點(diǎn)R的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)A(0,1),點(diǎn)M、N在曲線C上,且直線AM與直線AN的斜率之積為
2
3
,求△AMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件數(shù)學(xué)公式的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷3(文科)(解析版) 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案