精英家教網 > 高中數學 > 題目詳情
過點(0,4)可作
3
3
條直線與雙曲線y2-4x2=16有且只有一個公共點.
分析:設直線方程聯立消元后,根據k2-4=0,或k2-4≠0且△=0求得k;直線的斜率不存在時,不合題意,綜合可得直線條數.
解答:解:當直線無斜率時,方程為x=0,代入y2-4x2=16,可解得y=±4,故直線與曲線有2個公共點,不合題意;
當直線斜率存在時,設方程為y=kx+4,代入雙曲線方程化簡得(k2-4)x2+8kx=0
要使直線與雙曲線只有一個公共點,需上述方程只有一根或兩實根相等,
∴k2-4=0,或k2-4≠0且△=0,解得k=±2,或k=0
故有3條直線與雙曲線y2-4x2=16有且只有一個公共點.
故答案為:3
點評:本題主要考查直線與圓錐曲線的綜合問題,突出考查了數形結合、分類討論的應用,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

過點(1,3)作直線l,若經過點(a,0)和(0,b),且a∈N*,b∈N*,則可作出的l的條數為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=3x2-3x直線l1:x=2和l2:y=3tx,其中t為常數且0<<1.直線l2與函數f(x)的圖象以及直線l1、l2與函數f(x)的圖象圍成的封閉圖形如圖中陰影所示,設這兩個陰影區(qū)域的面積之和為S(t).
(1)求函數S(t)的解析式;
(2)若函數L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說明理由;
(3)定義函數h(x)=S(x),x∈R若過點A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

若-4≤a≤3,則過點A(a,a)可作圓x2+y2-2ax+a2+2a-3=0的兩條切線的概率為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•德陽三模)已知函數f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函數f(x)的單調增區(qū)間;
(2)設a>0,x=2是f(x)的極值點,函數h(x)=xe-xf(x).若過點A(0,m)(m≠0)可作曲線y=h(x)的三條切線,求實數m的取值范圍;
(3)設a>1,函數g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)=3x2-3x直線l1:x=2和l2:y=3tx,其中t為常數且0<<1.直線l2與函數f(x)的圖象以及直線l1、l2與函數f(x)的圖象圍成的封閉圖形如圖中陰影所示,設這兩個陰影區(qū)域的面積之和為S(t).
(1)求函數S(t)的解析式;
(2)若函數L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說明理由;
(3)定義函數h(x)=S(x),x∈R若過點A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案