10.曲線$\left\{\begin{array}{l}x=3cosφ\(chéng)\ y=2sinφ\(chéng)end{array}\right.$(φ為參數(shù))上的點(diǎn)到直線$\left\{\begin{array}{l}x=\frac{1}{2}+\frac{{2\sqrt{5}}}{5}t\\ y=1-\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t為參數(shù))的距離為$\frac{{\sqrt{5}}}{2}$的點(diǎn)的個(gè)數(shù)為(  )
A.1B.2C.3D.4

分析 設(shè)曲線$\left\{\begin{array}{l}x=3cosφ\(chéng)\ y=2sinφ\(chéng)end{array}\right.$(φ為參數(shù))上的一點(diǎn)P(3cosφ,2sinφ),直線$\left\{\begin{array}{l}x=\frac{1}{2}+\frac{{2\sqrt{5}}}{5}t\\ y=1-\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t為參數(shù)),消去參數(shù)化為普通方程:2x+4y-5=0.則點(diǎn)P到直線的距離d=$\frac{|10sin(φ-θ)-5|}{2\sqrt{5}}$,求出取值范圍即可判斷出結(jié)論.

解答 解:設(shè)曲線$\left\{\begin{array}{l}x=3cosφ\(chéng)\ y=2sinφ\(chéng)end{array}\right.$(φ為參數(shù))上的一點(diǎn)P(3cosφ,2sinφ),
直線$\left\{\begin{array}{l}x=\frac{1}{2}+\frac{{2\sqrt{5}}}{5}t\\ y=1-\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t為參數(shù)),消去參數(shù)化為普通方程:2x+4y-5=0.
則點(diǎn)P到直線的距離d=$\frac{|6cosφ+8sinφ-5|}{2\sqrt{5}}$=$\frac{|10sin(φ-θ)-5|}{2\sqrt{5}}$∈$[\frac{\sqrt{5}}{2},\frac{3\sqrt{5}}{2}]$,
因此曲線$\left\{\begin{array}{l}x=3cosφ\(chéng)\ y=2sinφ\(chéng)end{array}\right.$(φ為參數(shù))上的點(diǎn)到直線$\left\{\begin{array}{l}x=\frac{1}{2}+\frac{{2\sqrt{5}}}{5}t\\ y=1-\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t為參數(shù))的距離為$\frac{{\sqrt{5}}}{2}$的點(diǎn)的個(gè)數(shù)為1個(gè).
故選:A.

點(diǎn)評(píng) 本題考查了參數(shù)方程與普通方程的互化、點(diǎn)到直線的距離公式、三角函數(shù)的單調(diào)性與值域、和差公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不等式2x2-2axy+y2≥0對(duì)任意x∈[1,2]及任意y∈[1,4]恒成立,則實(shí)數(shù)a取值范圍是(-∞,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-ax-1-$\frac{{x}^{2}}{2}$,x∈R.
(Ⅰ)若a=$\frac{1}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x≥0都有f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)F(x)=f(x)+f(-x)+2+x2,求證:F(1)•F(2)…F(n)>(en+1+2)${\;}^{\frac{n}{2}}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,曲線C的方程為ρ2cos2θ+4ρ2sin2θ=4.直線l交曲線C與A、B兩點(diǎn).
(Ⅰ)求|AB|;
(Ⅱ)若點(diǎn)P為曲線C上任意一點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x+y+z=0且xyz=2,求|x|+|y|+|z|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=x2-3x+lnx在x=$\frac{1}{2}$處取得極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知|a|=5,|b|=3,且|a+b|=|a|+|b|,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,PA⊥矩形ABCD所在的平面,M、N分別是AB、PC的中點(diǎn),PA=AD=a,AB=2a.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥CD;
(3)PC與平面ABCD所成角的大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四棱錐P-ABCD的底面是菱形,對(duì)角線AC、BD交于點(diǎn)O,OA=3,OB=4,OP=6,OP⊥底面ABCD,點(diǎn)滿足$\overrightarrow{PM}$=t$\overrightarrow{PC}$,t∈(0,1).
(1)當(dāng)t=$\frac{1}{2}$時(shí),證明:PA∥平面BDM.
(2)若二面角M-AB-C的大小為$\frac{π}{4}$,問:符合條件的點(diǎn)M是否存在.若存在,求出t的值.若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案