已知數(shù)列滿(mǎn)足,且是等比數(shù)列。
(Ⅰ)求的值;
(Ⅱ)求出通項(xiàng)公式
(Ⅲ)求證:

(Ⅰ);(Ⅱ);(Ⅲ)詳見(jiàn)解析.

解析試題分析:(Ⅰ),這是已知型求,可利用,來(lái)求出遞推式,得,由得數(shù)列得公比為,由,求出,則,從而可求出;(Ⅱ)求出通項(xiàng)公式,由(Ⅰ)知數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,這樣能寫(xiě)出的通項(xiàng)公式,從而可得數(shù)列的通項(xiàng)公式;(Ⅲ)求證:,觀察式子,當(dāng)時(shí),,這樣相鄰兩項(xiàng)相加,相鄰兩項(xiàng)相加,得到一個(gè)等比數(shù)列,利用等比數(shù)列的前n項(xiàng)和公式,即可證得.
試題解析:(1)當(dāng)時(shí),   
     
       又
                                      5分
(Ⅱ)由(1)知是以為首項(xiàng),2為公比的等比數(shù)列
,                  7分
(Ⅲ)當(dāng)時(shí),
  10分
由2到賦值并累加得:
          13分
考點(diǎn):數(shù)列的通項(xiàng)公式,數(shù)列求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿(mǎn)足().
(1)求的值;
(2)求(用含的式子表示);
(3)(理)記數(shù)列的前項(xiàng)和為,求(用含的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

稱(chēng)滿(mǎn)足以下兩個(gè)條件的有窮數(shù)列階“期待數(shù)列”:
;②.
(1)若等比數(shù)列階“期待數(shù)列”,求公比q及的通項(xiàng)公式;
(2)若一個(gè)等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記n階“期待數(shù)列”的前k項(xiàng)和為
(i)求證:;
(ii)若存在使,試問(wèn)數(shù)列能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前項(xiàng)和為,若,點(diǎn)在直線上.
⑴求證:數(shù)列是等差數(shù)列;
⑵若數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和
⑶設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)遞增等差數(shù)列的前n項(xiàng)和為,已知,的等比中項(xiàng).
(l)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知公差不為零的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿(mǎn)足,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意的,都有為正常數(shù)).
(1)求證:數(shù)列是等比數(shù)列;
(2)數(shù)列滿(mǎn)足,求數(shù)列的通項(xiàng)公式;
(3)在滿(mǎn)足(2)的條件下,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列滿(mǎn)足, 
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為 ,對(duì)于任意的恒有    
(1) 求數(shù)列的通項(xiàng)公式 
(2)若證明: 

查看答案和解析>>

同步練習(xí)冊(cè)答案