【題目】機(jī)床廠今年年初用98萬元購(gòu)進(jìn)一臺(tái)數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.
(Ⅰ)寫出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)從第幾年開始,該機(jī)床開始盈利(盈利額為正值);
(Ⅲ)使用若干年后,對(duì)機(jī)床的處理方案有兩種:
(1)當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬元價(jià)格處理該機(jī)床;
(2)當(dāng)盈利額達(dá)到最大值時(shí),以12萬元價(jià)格處理該機(jī)床.
請(qǐng)你研究一下哪種方案處理較為合理?請(qǐng)說明理由.
【答案】(Ⅰ) ;(Ⅱ)從第3年開始盈利;(Ⅲ)方案Ⅰ比較合理.
【解析】
試題分析:(Ⅰ)使用x年的總收入為,每年支付的維修保養(yǎng)費(fèi)用構(gòu)成一等差數(shù)列,由等差數(shù)列求和公式可得使用x年的總支出,總收入減去總支出便可得使用x年后數(shù)控機(jī)床的盈利額,從而得y與x之間的函數(shù)關(guān)系式.
(Ⅱ)解不等式便可得的范圍,從而知道從從第幾年開始盈利.
(Ⅲ))(1)年平均盈利額為:
對(duì)可用重要不等式求出其最大值,從而可確定什么時(shí)候年平均盈利額達(dá)到最大值,可求出工廠獲得的總利潤(rùn).
(2)盈利額y=-2x2+40x-98是一個(gè)二次函數(shù),可通過配方求出其最大值,從而可確定什么時(shí)候盈利額達(dá)到最大值,可求出工廠獲得的總利潤(rùn).
將二者進(jìn)行比較,便知哪個(gè)方案更合理.
試題解析:(Ⅰ)依題得(xN*). 3分
(Ⅱ)解不等式得.
.又∵xN*,∴3≤x≤17,故從第3年開始盈利. 7分
(Ⅲ)(1)年平均盈利額為:
,當(dāng)且僅當(dāng)時(shí),即x=7時(shí)等號(hào)成立.
所以到2008年,年平均盈利額達(dá)到最大值,工廠共獲利12×7+30=114萬元.
(2)盈利額y=-2x2+40x-98=-(x-10)2+102,當(dāng)x=10時(shí),ymax=102.
故到2011年,盈利額達(dá)到最大值,工廠獲利102+12=114萬元 .
盈利額達(dá)到的最大值相同,而方案Ⅰ所用的時(shí)間較短,故方案Ⅰ比較合理. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B在AM上,D在AN上,且對(duì)角線MN過C點(diǎn),已知|AB|=3米,|AD|=2米
(1)設(shè)AN的長(zhǎng)為x米,用x表示矩形AMPN的面積?
(2)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=log3(2﹣x)的定義域是( )
A.[2,+∞)B.(2,+∞)C.(﹣∞,2)D.(﹣∞,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知a=bcos C+csin B.
(1)求B;(2)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)列,,為數(shù)列是前項(xiàng)和,且,,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某種商品每日的銷售量y(單位:噸)與銷售價(jià)格x(單位:萬元/噸,1<x≤5)滿足:當(dāng)1<x≤3時(shí),y=a(x﹣4)2 +(a為常數(shù));當(dāng)3<x≤5時(shí),y=kx+7(k<0),已知當(dāng)銷售價(jià)格為3萬元/噸時(shí),每日可售出該商品4噸,且銷售價(jià)格x∈(3,5]變化時(shí),銷售量最低為2噸.
(1)求a,k的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該商品的銷售成本為1萬元/噸,試確定銷售價(jià)格x的值,使得每日銷售該商品所獲利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點(diǎn)作直線l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校舉辦運(yùn)動(dòng)會(huì)時(shí),高一(1)班有28名同學(xué)參加比賽,有15人參加游泳比賽,有8人參加田徑比賽,有14人參加球類比賽,同時(shí)參加游泳和田徑比賽的有3人,同時(shí)參加游泳和球類比賽的有3人,沒有人同時(shí)參加三項(xiàng)比賽.則同時(shí)參加田徑和球類比賽的人數(shù)是( ).
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司今年年初用25萬元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖 .
(1)求;
(2)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com