已知全集U=R,集合M={x|x>2},N={x|
1
2
<log2x<2},P={x|x≤a-1}.
(1)求N∩(∁UM);
(2)若N⊆P,求實(shí)數(shù)a的取值范圍.
考點(diǎn):集合關(guān)系中的參數(shù)取值問題,集合的包含關(guān)系判斷及應(yīng)用,交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:(1)根據(jù)M求出∁UM,解對(duì)數(shù)不等式求出N,進(jìn)而根據(jù)集合交集的定義可得N∩(∁UM);
(2)若N⊆P,則a-1≥4,進(jìn)而可得實(shí)數(shù)a的取值范圍.
解答: 解:(1)∵集合M={x|x>2}=(2,+∞),
∴∁UM=(-∞,2],
N={x|
1
2
<log2x<2}={x|log2
2
<log2x<log24}=(
2
,4),
∴N∩(∁UM)=(
2
,2].
(2)∵N⊆P,
故a-1≥4,
解得a≥5,
故實(shí)數(shù)a的取值范圍為[5,+∞).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是集合包含關(guān)系的判斷及應(yīng)用,集合交并補(bǔ)集的混合運(yùn)算,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=logax在(0,+∞)上是增函數(shù),且當(dāng)0<x≤
1
4
時(shí),axlog
1
2
x,則a的取值范圍是(  )
A、(0,1)
B、(1,2)
C、(1,8)
D、(1,16)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|ax2-x+b=0}只有一個(gè)元素-1,求實(shí)數(shù)ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(0,
1
2
),直線l:y=-
1
2
,點(diǎn)N為l上一動(dòng)點(diǎn),過N作直線l1⊥l.l2為NF的中垂線,l1與l2交于點(diǎn)M,點(diǎn)M的軌跡為曲線C
(Ⅰ)求曲線C的方程;
(Ⅱ)若E為曲線C上一點(diǎn),過點(diǎn)E作曲線C的切線交直線l于點(diǎn)Q,問在y軸上是否存在一定點(diǎn),使得以EQ為直徑的圓過該點(diǎn),如果存在,求出該點(diǎn)坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列An={an}:a1,a2,…,an(n≥2)滿足|ak+1-ak|=1(k=1,2,…,n-1),則稱數(shù)列An為E數(shù)列,記S(An)=a1+a2+…+an
(Ⅰ)寫出一個(gè)滿足a1=a9=0,且S(A9)>0的E數(shù)列A9;
(Ⅱ)若a1=13,n=2000,證明:E數(shù)列An是遞增數(shù)列的充要條件是an=2012.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某部門為了了解用電量y(單位:度)與氣溫x(單位:℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,因某天統(tǒng)計(jì)的用電量數(shù)據(jù)丟失,用t表示,如下表:
氣溫(℃)181310-1
用電量(度)24t3864
(1)由以上數(shù)據(jù),求這4天氣溫的方差.
(2)若用電量與氣溫之間具有較好的線性相關(guān)關(guān)系,回歸直線方程為
y
=-2x+b,且預(yù)測(cè)氣溫為-4℃時(shí),用電量為68度,求t、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其地理成績(均為整數(shù))分成四段[40,50),[50,60),[60,70),[70,80]后畫出如圖所示頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)估計(jì)這次考試的眾數(shù)m與中位數(shù)n(結(jié)果保留一位小數(shù));
(2)估計(jì)這次考試的及格率(60分以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-4x+5.
(Ⅰ)求f(2)的值;
(Ⅱ)若f(a)=10,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲從裝有編號(hào)為1,2,3,4,5的卡片的箱子中任取一張,乙從裝有編號(hào)為2,4的卡片的箱子中任取一張,用X,Y分別表示甲,乙取得的卡片上的數(shù)字.
(Ⅰ)求概率P(X>Y); 
(Ⅱ)設(shè)ξ=
X,X≥Y
Y,X<Y
,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案