已知f(x)=
|x-2|-4(|x|≤1)
1
1+x2
(|x|>1)
,則f(f(1))=
1
10
1
10
分析:利用分段函數(shù)直接代入求值即可.
解答:解:∵f(1)=|1-2|-4=1-4=-3,
∴f(f(1))=f(-3)=
1
1+(-3)2
=
1
1+9
=
1
10

故答案為:
1
10
點(diǎn)評(píng):本題主要考查分段函數(shù)的求值問(wèn)題,利用變量的取值范圍直接代入即可,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱(chēng)h (x)為f (x)、g(x)在R上生成的函數(shù).設(shè)f (x)=x2+x、g(x)=x+2,若h (x)為f (x)、g(x)在R上生成的一個(gè)偶函數(shù),且h(1)=3,則函數(shù)h (x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若k=
1
3
,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿(mǎn)足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域?yàn)?span id="tdquras" class="MathJye">[
1
a
,1],若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分別求f(x)、g(x)的定義域,并求f(x)•g(x)的值;(2)求f(x)的最小值并說(shuō)明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在滿(mǎn)足下列條件的正數(shù)t,使得對(duì)于任意的正
數(shù)x,a、b、c都可以成為某個(gè)三角形三邊的長(zhǎng)?若存在,則求出t的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿(mǎn)足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿(mǎn)足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案