【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個(gè)紅包,每個(gè)紅包金額為元,已知在每輪游戲中所產(chǎn)生的個(gè)紅包金額的頻率分布直方圖如圖所示

1的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);

2以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個(gè)紅包,其中金額在的紅包個(gè)數(shù)為,求的分布列和期望

【答案】1,眾數(shù)為2的分布列見(jiàn)解析,期望

【解析】

試題分析:1根據(jù)頻率分布直方圖,求出的值,再根據(jù)數(shù)的定義即可求出;2由題意可得到滿(mǎn)足二項(xiàng)式分布,可根據(jù)要求分別求出取各個(gè)值時(shí)的概率,即可得到的分布列,根據(jù)分布列即可求出的期望

試題解析:1由題可得:,,眾數(shù)為

2由頻率分布直方圖可得,紅包金額在的概率為,則

的取值為,

,,

,,

的分布列為

X

0

1

2

3

P

).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)5元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)6元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)3元.

(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)表示每天的利潤(rùn)(元);

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓.

(1)求證對(duì)任意實(shí)數(shù),該圓恒過(guò)一定點(diǎn);

(2)若該圓與圓切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線(xiàn) 的參數(shù)方程為為參數(shù)).

(1)直線(xiàn)過(guò)且與曲線(xiàn)相切,求直線(xiàn)的極坐標(biāo)方程;

(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),求曲線(xiàn)上的點(diǎn)到點(diǎn)的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>Dn,記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為f(n)(nN*).

1)求f(1)、f(2)的值及f(n)的表達(dá)式;

2)設(shè)bn=2nf(n),Sn{bn}的前n項(xiàng)和,求Sn

3)記,若對(duì)于一切正整數(shù)n,總有Tnm成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F并且經(jīng)過(guò)點(diǎn)A(1,﹣2).

(1)求拋物線(xiàn)C的方程;

(2)過(guò)F作傾斜角為45°的直線(xiàn)l,交拋物線(xiàn)C于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),求OMN的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在與橢圓交于兩點(diǎn)的直線(xiàn),使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有20名學(xué)生參加某次考試,成績(jī)(單位:分)的頻率分布直方圖如圖所示:

(Ⅰ)求頻率分布直方圖中的值;

(Ⅱ)分別求出成績(jī)落在中的學(xué)生人數(shù);

(Ⅲ)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求所選學(xué)生的成績(jī)都落在中的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c.

(1)若,求;

(2)若,且為鈍角,證明: ,并求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案