【題目】吳老師的班上有四名體育健將張明、王亮、李陽(yáng)、趙旭,他們都特別擅長(zhǎng)短跑,在某次運(yùn)動(dòng)會(huì)上,他們四人要組成一個(gè)米接力隊(duì),吳老師要安排他們四人的出場(chǎng)順序,以下是他們四人的對(duì)話:
張明:我不跑第一棒和第二棒;
王亮:我不跑第一棒和第四棒;
李陽(yáng):我也不跑第一棒和第四棒;
趙旭:如果王亮不跑第二棒,我就不跑第一棒.
吳老師聽(tīng)了他們四人的對(duì)話,安排了一種合理的出場(chǎng)順序,滿足了他們的所有要求,據(jù)此我們可以斷定,在吳老師安排的出場(chǎng)順序中,跑第三棒的人是( )
A. 張明B. 王亮C. 李陽(yáng)D. 趙旭
【答案】C
【解析】
由題意利用每個(gè)人說(shuō)說(shuō)的條件進(jìn)行推理即可確定第三棒的人選.
很明顯張明跑第三棒或第四棒,
若張明跑第三棒,則由王亮不跑第一棒和第四棒可知王亮跑第二棒,
而李陽(yáng)不跑第一棒和第四棒,則無(wú)法安排李陽(yáng),
可見(jiàn)張明跑第三棒不可行,則張明跑第四棒.
由王亮不跑第一棒和第四棒可知王亮跑第二棒或第三棒,
若王亮跑第三棒,由李陽(yáng)不跑第一棒和第四棒可知李陽(yáng)跑第二棒,
而趙旭要求如果王亮不跑第二棒,我就不跑第一棒,則趙旭無(wú)法安排;
故王亮跑第二棒,由李陽(yáng)不跑第一棒和第四棒可知李陽(yáng)跑第三棒,此時(shí)趙旭跑第一棒,所有人員安排完畢.
跑第三棒的人是李陽(yáng).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,.
(1)過(guò)作截面與線段交于點(diǎn),使得平面,試確定點(diǎn)的位置,并予以證明;
(2)在(1)的條件下,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高二學(xué)生平均每天體育鍛煉的時(shí)間進(jìn)行調(diào)查,調(diào)查結(jié)果如下表,將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表;并通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會(huì)交流,
(ⅰ)求這5人中,男生、女生各有多少人?
(ⅱ)從參加體會(huì)交流的5人中,隨機(jī)選出3人作重點(diǎn)發(fā)言,求選出的這3人中至少有1名女生的概率.
參考公式:,其中.
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的3組數(shù)據(jù)恰好是連續(xù)天的數(shù)據(jù)(表示數(shù)據(jù)來(lái)自互不相鄰的三天),求的分布列及期望:
(2)根據(jù)12月2日至4日數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)所得的線性回歸方程是否可靠?
附:參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分,(1)小問(wèn)7分,(2)小問(wèn)5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且是和的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com