已知拋物線的準線為,焦點為,圓的圓心在軸的正半軸上,且與軸相切,過原點作傾斜角為的直線,交于點,交圓于另一點,且
(1)求圓和拋物線C的方程;
(2)若為拋物線C上的動點,求的最小值;
(3)過上的動點Q向圓作切線,切點為S,T,
求證:直線ST恒過一個定點,并求該定點的坐標(biāo).
解:(1)易得,,設(shè)圓的方程為,
將點代入得,所以圓的方程為
在準線上,從而,拋物線的方程為
(2)由(1)得,設(shè)點,則
,
所以
因為,所以,即的最小值為.
(3)設(shè)點,過點的切線長為,則以為圓心,切線長為半徑的圓的方程為,
       ①
又圓的方程為,即     ②
由①②兩式相減即得直線的方程:
顯然上面直線恒過定點
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,,邊上的中線長之和為30,則的重心的軌跡方程( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上的點到直線的最大距離是    (     )
A.3B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.為雙曲線上的一點,為一個焦點,以為直徑的圓與圓的位置關(guān)系是
內(nèi)切      內(nèi)切或外切       .外切       .相離或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知是拋物線上一個動點,是橢圓上的一個動點,定點.若軸,且,則的周長的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知方向向量為v=(1,)的直線l過點(0,-2)和橢圓C:
的焦點,且橢圓C的中心關(guān)于直線l的對稱點在橢圓C的右準線上.
(Ⅰ)求橢圓C的方程;(Ⅱ)是否存在過點E(-2,0)的直線m交橢圓C于點M、N,滿足cot∠MON ≠0(O為原點).若存在,求直線m的方程;若不存
在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為,則它的漸近線方程是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標(biāo)系中,已知橢圓過點,且橢圓的離心率為
(1)求橢圓的方程
(2)是否存在以為直角頂點且內(nèi)接于橢圓的等腰直角三角形?若存在,求出共有幾個;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點的橢圓的右焦點為,離心率為
(1)  求橢圓的方程
(2)  若直線與橢圓恒有兩個不同交點、,且(其中為原點),求實數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案