某地區(qū)對12歲兒童瞬時記憶能力進(jìn)行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)甲、乙兩人參加一次英語口語考試,已知在備選的10道試題中,甲能答對其中的6題,乙能答對其中的8題.規(guī)定每次考試都從備選題中隨機(jī)抽出3題進(jìn)行測試,至少答對2題才算合格.(1)求甲、乙兩人考試均合格的概率;(2)求甲答對試題數(shù)的概率分布及數(shù)學(xué)期望.
(1);
(2)ξ 0 1 2 3 P
解析試題分析:(1)每人參加考試合格,必須且只需從備選的10個題中隨機(jī)抽出3題進(jìn)行測試,至少答對2題才算合格,即恰好答對2題或恰好答對3題,由已知及古典型概率公式可求出甲、乙兩人考試分別合格的概率,且知兩人參加考試合格的事件是相互獨(dú)立的,從而由相互獨(dú)立事件同時發(fā)生的概率積公式可求得甲、乙兩人考試均合格的概率;(2)由于每次考試都從備選題中隨機(jī)抽出3題進(jìn)行測試,故甲答對試題數(shù)的所有可能取值只可能是:0,1,2,3.不可能再有第四種可能了,應(yīng)用古典型概率計(jì)算公式,可計(jì)算出的每一個取值對應(yīng)事件的概率,從而得到甲答對試題數(shù)ξ的概率分布及數(shù)學(xué)期望.
試題解析:(1)設(shè)甲、乙兩人考試合格的事件分別為A、B,則,;因?yàn)槭录痢相互獨(dú)立,所以甲、乙兩人考試均合格的概率為:.答:甲、乙兩人考試均合格的概率為.
(2)依題意,知的所有可能取值為:0,1,2,3.則,,
甲答對試題數(shù)ξ的概率分布如下:ξ 0 1 2 3 P
甲答對試題數(shù)ξ的數(shù)學(xué)期望 12分
考點(diǎn):1.古典概率;2.隨機(jī)變量的分布列;3.?dāng)?shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一個盒子中,放有標(biāo)號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片的標(biāo)號分別為x、y,記ξ=|x-2|+|y-x|.
(1)求隨機(jī)變量ξ的最大值,并求事件“ξ取得最大值”的概率;
(2)求隨機(jī)變量ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;(2)朝上的一面數(shù)之和小于5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知方程是關(guān)于的一元二次方程.
(1)若是從集合四個數(shù)中任取的一個數(shù),是從集合三個數(shù)中任取的一個數(shù),求上述方程有實(shí)數(shù)根的概率;
(2)若,,求上述方程有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:
(1)兩數(shù)之和為6的概率;
(2)兩數(shù)之積是6的倍數(shù)的概率;
(3)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)某地區(qū)型血的人數(shù)占總?cè)丝跀?shù)的比為,現(xiàn)從中隨機(jī)抽取3人.
(1)求3人中恰有2人為型血的概率;
(2)記型血的人數(shù)為,求的概率分布與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)把一顆質(zhì)地均勻,四個面上分別標(biāo)有復(fù)數(shù),,,(為虛數(shù)單位)的正四面體玩具連續(xù)拋擲兩次,第一次出現(xiàn)底面朝下的復(fù)數(shù)記為,第二次出現(xiàn)底面朝下的復(fù)數(shù)記為.
(1)用表示“”這一事件,求事件的概率;
(2)設(shè)復(fù)數(shù)的實(shí)部為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了解某班關(guān)注NBA(美國職業(yè)籃球)是否與性別有關(guān),對某班48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:
| 關(guān)注NBA | 不關(guān)注NBA | 合計(jì) |
男生 | | 6 | |
女生 | 10 | | |
合計(jì) | | | 48 |
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com