已知函數(shù)的圖像過原點(diǎn),且在處的切線為直線
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值.
(Ⅰ);(Ⅱ)最小值為,最大值為

試題分析:(Ⅰ)求函數(shù)的解析式,關(guān)鍵是求的值,因?yàn)楹瘮?shù)的圖像過原點(diǎn),故,可得,又因?yàn)樵?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024445092323.png" style="vertical-align:middle;" />處的切線為直線,即在處的切線的直線斜率為,即,可得,還需要找一個(gè)條件,切線方程為,即,代入可求出的值;(Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值,只需對(duì)求導(dǎo)數(shù),分別求出導(dǎo)數(shù)等零點(diǎn)對(duì)與端點(diǎn)處的函數(shù)值,比較誰最大為最大值,誰最小為最小值即可.
試題解析:(Ⅰ)由題意,
(Ⅱ)
故最小值為,最大值為.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且在時(shí)函數(shù)取得極值.
(1)求的單調(diào)增區(qū)間;
(2)若,
(Ⅰ)證明:當(dāng)時(shí),的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)求的單調(diào)區(qū)間及最大值;
(2)恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè),,,為函數(shù)的圖象上任意不同兩點(diǎn),若過,兩點(diǎn)的直線的斜率恒大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求處的切線方程;
(2)若上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知M是曲線y=ln x+x2+(1-a)x上的一點(diǎn),若曲線在M處的切線的傾斜角是均不小于的銳角,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)的圖象上任意點(diǎn)處切線的傾斜角為,則的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,若,則x0等于    (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案