【題目】已知正方體的棱長(zhǎng)為2,平面過正方體的一個(gè)頂點(diǎn),且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.
【答案】
【解析】
根據(jù)正方體的性質(zhì),結(jié)合線面角的定義,判斷出平面的位置情況,最后根據(jù)正投影的定義、菱形的面積公式進(jìn)行求解即可.
正方體中所有的棱是三組平行的棱,如圖所示:
圖中的正三角形所在的平面或者與該平面平行的平面為平面,滿足與正方體每條棱所在直線所成的角相等,
正三角形是平面截正方體所形成三角形截面中,截面面積最大者,正方體的棱長(zhǎng)為2,
所以正三角形的邊長(zhǎng)為:,正方體中,
三個(gè)面在平面的內(nèi)的正投影是三個(gè)全等的菱形,如下圖所示:
可以看成兩個(gè)邊長(zhǎng)為的等邊三角形,
所以正方體在平面內(nèi)的正投影面積是:
.
故答案為;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(3)當(dāng)且時(shí),不等式在上恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校近幾年來通過“書香校園”主題系列活動(dòng),倡導(dǎo)學(xué)生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計(jì)圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是( )
A.從2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長(zhǎng)
B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7本
C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3本
D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,點(diǎn)E是棱的中點(diǎn),點(diǎn)F是線段上的一個(gè)動(dòng)點(diǎn).有以下三個(gè)命題:
①異面直線與所成的角是定值;
②三棱錐的體積是定值;
③直線與平面所成的角是定值.
其中真命題的個(gè)數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,,G為的重心,過點(diǎn)G作三棱錐的一個(gè)截面,使截面平行于直線PB和AC,則截面的周長(zhǎng)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),是什么曲線?
(2)當(dāng)時(shí),求與的公共點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:
則下面結(jié)論中正確的是( )
A.新農(nóng)村建設(shè)后,種植收入減少
B.新農(nóng)村建設(shè)后,其他收入增加了
C.新農(nóng)村建設(shè)后,養(yǎng)殖收入沒有增加
D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會(huì)交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會(huì)交流的10人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com