【題目】如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,若過直徑CD與點E的平面與圓錐側面的交線是以E為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點P的距離為 .
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心在 軸上的圓 過點 和 ,圓 的方程為 .
(1)求圓 的方程;
(2)由圓 上的動點 向圓 作兩條切線分別交 軸于 , 兩點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面為的中點,連接 (如圖2).
(1)求證: ;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形, 為棱上的動點,且.
(1)求證: ;
(2)試確定的值,使得二面角的平面角余弦值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程選講
以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,
在直角坐標系中,曲線的參數(shù)方程為(是參數(shù), ),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)當時,曲線和相交于、兩點,求以線段為直徑的圓的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+ 與橢圓C交于A,B兩點,是否存在實數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com