【題目】設(shè)f(x)= (a>0,b>0).
(1)當(dāng)a=b=1時(shí),證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)在(2)的條件下,試證明函數(shù)f(x)的單調(diào)性,并解不等式f(1﹣m)+f(1+m2)<0.
【答案】
(1)解:當(dāng)a=b=1時(shí),f(x)= = ,∴ , ,
所以,f(﹣1)≠﹣f(1),∴f(x)不是奇函數(shù)
(2)解:若f(x)是奇函數(shù)時(shí),f(﹣x)=﹣f(x),即 =﹣ 對(duì)定義域內(nèi)任意實(shí)數(shù)x成立.
化簡(jiǎn)整理得(2a﹣b)22x+(2ab﹣4)2x+(2a﹣b)=0,這是關(guān)于x的恒等式,
∴ ,∴ ,或 .
經(jīng)檢驗(yàn), 符合題意
(3)解: ,
在定義域中任取兩個(gè)實(shí)數(shù)x1、x2,且x1<x2,則 ,
∵x1<x2,∴ ,從而f(x1)﹣f(x2)>0,∴函數(shù)f(x)在R上為單調(diào)減函數(shù).
∴f(1﹣m)+f(1﹣m2)<0,即 f(1﹣m)<﹣f(1﹣m2),∴f(1﹣m)<f(m2﹣1),
∴1﹣m>m2﹣1,求得﹣2<m<1,∴原不等式的解集為(﹣2,1)
【解析】(1)舉反例,根據(jù)f(﹣1)≠﹣f(1),可得f(x)不是奇函數(shù).(2)根據(jù)f(﹣x)=﹣f(x)恒成立,求得a與b的值.(3)在定義域中任取兩個(gè)實(shí)數(shù)x1、x2 , 且x1<x2 , 求得f(x1)>f(x2),可得函數(shù)f(x)在R上為單調(diào)減函數(shù).化簡(jiǎn)不等式為f(1﹣m)<f(m2﹣1),
可得 1﹣m>m2﹣1,由此求得原不等式的解集.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)若不等式在區(qū)間上恒成立,求的取值范圍,并證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求證: ,并指出等號(hào)成立的條件;
(Ⅱ)求證:對(duì)任意實(shí)數(shù),總存在實(shí)數(shù),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,其中b是常數(shù).
(1)若y=f(x)是奇函數(shù),求b的值;
(2)求證:y=f(x)是單調(diào)增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開(kāi)”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表;
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計(jì) | |
支持“生育二胎” | a= | c= | |
不支持“生育二胎” | b= | d= | |
合計(jì) |
(2)判斷是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開(kāi)”政策的支持度有差異.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附表:K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù),且當(dāng)時(shí), 恒成立,其中為的導(dǎo)函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù),α∈[0,2π)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ﹣ρcosθ=2.
(1)寫出直線l和曲線C的直角坐標(biāo)方程;
(2)求直線l與曲線C交點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x﹣ .
(1)若f(x)= ,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com