甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為、,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為

(1)求的值.

(2)設甲、乙、丙三人中破譯出密碼的人數(shù)為,求的分布列和數(shù)學期望

 

【答案】

(1)

(2)

0

1

2

3

P

【解析】

試題分析:(1)記事件=”只有甲破譯出密碼”

,可解得                    3分

(2) 的可能取值為0、1,、2、3;

0

1

2

3

P

8分

          10分

考點:獨立事件的概率

點評:主要是考查了獨立事件的概率的公式以及分布列的求解,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為
1
2
1
3
,p
.且他們是否破譯出密碼互不影響.若三人中只有甲破譯出密碼的概率為
1
4

(Ⅰ)求甲乙二人中至少有一人破譯出密碼的概率;
(Ⅱ)求p的值;
(Ⅲ)設甲、乙、丙三人中破譯出密碼的人數(shù)為X,求X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為
1
3
,
1
4
,p
,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為
1
6

(1)求p的值,
(2)設在甲、乙、丙三人中破譯出密碼的總?cè)藬?shù)為X,求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為
1
2
、
1
3
、p,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為
1
4

(1)求p的值.
(2)設甲、乙、丙三人中破譯出密碼的人數(shù)為X,求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆內(nèi)蒙古赤峰市高三摸底考試理科數(shù)學試卷(解析版) 題型:解答題

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為,

且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為.

(1)求的值,

 (2)設在甲、乙、丙三人中破譯出密碼的總?cè)藬?shù)為X,求X的分布列和數(shù)學期望E(X).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆陜西省西安市高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為.且他們是否破譯出密碼互不影響.若三人中只有甲破譯出密碼的概率為.

(Ⅰ)求甲乙二人中至少有一人破譯出密碼的概率;

(Ⅱ)求的值;

(Ⅲ)設甲、乙、丙三人中破譯出密碼的人數(shù)為,求的分布列和數(shù)學期望.

 

查看答案和解析>>

同步練習冊答案