精英家教網 > 高中數學 > 題目詳情

已知定義在[-3,3]上的函數 數學公式,(t為常數).
(1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
(2)當t≥6時,證明函數y=f(x)的圖象上至少有一點在直線y=8上.

解:(1)f'(x)=t-
∵2≤t≤6∴
x-
f'(x)-0+0-
f(x)極小值極大值
時,即t=6時,f(x)在上是增函數,
即2<t<6時,f(x)在減,在上增
∴f(x)在[-2,0]上最小值為,此時x=-
(2)由(1)可知f(x)在上增,
時,f(x)在[-3,3]上最大值為f(3)=3t-=27>8
時,f(x)在[0,3]上最大值為,=8
又f(0)=0,
∴y=f(x)的圖象上至少有一點在直線y=8上
分析:(1)求出函數的導數,研究函數f(x)在[-2,0]上的單調性,確定出最值的位置,求出最值及取得最值時的自變量;
(2)t≥6時,研究函數的單調性,求出函數在定義在[-3,3]上最大值,將此最值與8比較即可得出所要證明的結論成立與否
點評:本題考查利用導數求閉區(qū)間上的最值,解題的關鍵是利用導數研究清楚函數的單調性,確定出最值取到的位置,求出最值,本題第二小題將圖象在直線上方的問題轉化為函數值的比較,解題時注意這一技巧的運用,本題運算量比較大,解題時要注意嚴謹運算,莫因為運算出錯導致解題失敗
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在[-3,3]上的函數y=f(x)滿足條件:對于任意的x,y∈R,都有f(x+y)=f(x)+f(y).當x>0時,f(x)<0.
(1)求證:函數f(x)是奇函數;
(2)求證:函數f(x)在[-3,3]上是減函數;
(3)解不等式f(2x-1)+f(3x+2)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在[-3,3]上的函數 y=tx-
12
x3
,(t為常數).
(1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
(2)當t≥6時,證明函數y=f(x)的圖象上至少有一點在直線y=8上.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定義在[-3,3]上的函數 y=tx-
1
2
x3
,(t為常數).
(1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
(2)當t≥6時,證明函數y=f(x)的圖象上至少有一點在直線y=8上.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年福建省泉州市南安一中高二(上)期末數學試卷(理科)(解析版) 題型:解答題

已知定義在[-3,3]上的函數 ,(t為常數).
(1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
(2)當t≥6時,證明函數y=f(x)的圖象上至少有一點在直線y=8上.

查看答案和解析>>

同步練習冊答案