已知Sn是等差數(shù)列{an}的前n項和,S10>0,且S11=0,若Sn≤SK對n∈N+恒成立,則正整數(shù)k構(gòu)成的集合為
 
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件知
10a1+45d>0
11a1+55d=0
,所以d<0,a6=0,由此能求出正整數(shù)K構(gòu)成的集合.
解答: 解:∵Sn是等差數(shù)列{an}的前n項和,S10>0,且S11=0,
10a1+45d>0
11a1+55d=0
,即
a1+5d=0
a1+
9d
2
>0

∴d<0,a6=a1+5d=0,
∴a1到a5都是正數(shù),a6是0,以后各項全是負(fù)數(shù).
∵Sn≤Sk對n∈N+恒成立,∴k=5,或k=6.
∴正整數(shù)k構(gòu)成的集合為{5,6}.
點評:本題以數(shù)列為載體考查集合的求法,是中檔題,解題時要注意等差數(shù)列的性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數(shù),且x=-1時,函數(shù)取極值1;若對任意的x1,x2∈[-1,1],均有|f(x1)-f(x2)|≤s成立,則s的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個算法的程序框圖如圖所示,則該程序輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,滿足b2+c2-bc=a2,且
a
b
=
3
,則角C的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2
4
+4lnx
,則f′(2)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若x>1,則x2>2”的否定是( 。
A、?x>1,x2≤2
B、?x>1,x2>2
C、?x>1,x2≤2
D、?x≤1,x2>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前m項和為4,前2m項和為12,則它的前3m項和是( 。
A、28B、48C、36D、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等比數(shù)列{an}的前n項和,如果a3+a6=2,a4a5=-8,且a3<a6,則
S6
S3
=(  )
A、1B、3C、-1D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:平面α∩平面β=l,若m⊥l,則m⊥β;命題q:函數(shù)y=sinx的圖象關(guān)于直線x=
π
2
對稱.則下列判斷正確的是( 。
A、p為真B、¬q為假
C、p∨q為假D、p∧q為真

查看答案和解析>>

同步練習(xí)冊答案