8.設(shè)向量$\overrightarrow{m}$=(2x-1,3),向量$\overrightarrow{n}$=(1,-1),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則實(shí)數(shù)x的值為( 。
A.-1B.1C.2D.3

分析 利用向量垂直的性質(zhì)求解.

解答 解:∵向量$\overrightarrow{m}$=(2x-1,3),向量$\overrightarrow{n}$=(1,-1),$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴$\overrightarrow{m}•\overrightarrow{n}$=(2x-1,3)•(1,-1)=2x-1-3=0,
解得x=2.
故選:C.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)A(-1,2),B(3,1),若直線ax-y-2=0與線段AB相交,則a的范圍是(  )
A.[-4,1]B.[1,4]C.(-∞,-4]∪[1,+∞)D.(-∞,-1]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)f'(x)是函數(shù)f(x)的導(dǎo)數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)f(x)的拐點(diǎn).某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點(diǎn),任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且拐點(diǎn)就是對(duì)稱(chēng)中心,
設(shè)函數(shù)g(x)=x3-3x2+4x+2,利用上述探究結(jié)果
計(jì)算:$g(\frac{1}{10})+g(\frac{2}{10})+g(\frac{3}{10})+…+g(\frac{19}{10})$=76.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知i是虛數(shù)單位,復(fù)數(shù)(2+i)2的共軛復(fù)數(shù)為( 。
A.3-4iB.3+4iC.5-4iD.5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿(mǎn)足acosB=bcosA.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)求$sinB+cos({A+\frac{π}{6}})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)a,b∈R,函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx+1$,g(x)=ex(e為自然對(duì)數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(-∞,0)內(nèi)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.曲線$y=lnx-\frac{2}{x}$在x=1處的切線的傾斜角為α,則cosα+sinα的值為(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如果實(shí)數(shù)x,y滿(mǎn)足關(guān)系$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,又$\frac{2x+y-7}{x-3}≤c$恒成立,則c的取值范圍為(  )
A.[$\frac{9}{5}$,3]B.(-∞,3]C.[3,+∞)D.(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)解不等式:3≤x2-2x<8;
(2)已知a,b,c,d均為實(shí)數(shù),求證:(a2+b2)(c2+d2)≥(ac+bd)2

查看答案和解析>>

同步練習(xí)冊(cè)答案