【題目】已知函數(shù)若函數(shù)存在5個零點(diǎn),則實(shí)數(shù)的取值范圍為________.

【答案】

【解析】

先作出函數(shù)y=2f(x)的圖像,再令=0,則存在5個零點(diǎn),再作函數(shù)y=的圖像,數(shù)形結(jié)合分析得到a的取值范圍.

先作出函數(shù)y=2f(x)的圖像如圖所示(圖中黑色的曲線),

當(dāng)a=1時,函數(shù)y=|2f(x)-1|的圖像如圖所示(圖中紅色的曲線),它與直線y=1只有四個交點(diǎn),即函數(shù)存在4個零點(diǎn),不合題意.

當(dāng)1<a<3時,函數(shù)y=|2f(x)-a|的圖像如圖所示(圖中紅色的曲線),它與直線y=15個交點(diǎn),即函數(shù)存在5個零點(diǎn),符合題意.

當(dāng)a=3時,函數(shù)y=|2f(x)-3|的圖像如圖所示(圖中紅色的曲線),它與直線y=16個交點(diǎn),即函數(shù)存在6個零點(diǎn),不符合題意.

所以實(shí)數(shù)a的取值范圍為.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓)與拋物線:的一個公共點(diǎn),且橢圓與拋物線具有一個相同的焦點(diǎn)

(Ⅰ)求橢圓及拋物線的方程

(Ⅱ)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,且橢圓的短軸長為2.

(1)球橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線過右焦點(diǎn),且它們的斜率乘積為,設(shè)分別與橢圓交于點(diǎn).

①求的值;

②設(shè)的中點(diǎn)的中點(diǎn)為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一種魚的身體吸收汞,一定量身體中汞的含量超過其體重的1.00ppm(即百萬分之一)的魚被人食用后,就會對人體產(chǎn)生危害.30條魚的樣本中發(fā)現(xiàn)的汞含量(單位:ppm)如下:

0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.02

1.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.68

1.85 1.20 0.81 0.82 0.84 1.29 1.26 2.10 0.91 1.31

1)請用合適的統(tǒng)計(jì)圖描述上述數(shù)據(jù),并分析這30條魚的汞含量的分布特點(diǎn);

2)求出上述樣本數(shù)據(jù)的平均數(shù)和標(biāo)準(zhǔn)差;

3)從實(shí)際情況看,許多魚的汞含量超標(biāo)的原因是這些魚在出售之前沒有被檢測過你認(rèn)為每批這種魚的平均承含量都比1.00ppm大嗎?

4)在上述樣本中,有多少條魚的汞含量在以平均數(shù)為中心、2倍標(biāo)準(zhǔn)差的范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年諾貝爾生理學(xué)或醫(yī)學(xué)獎獲得者威廉·凱林(WilliamG.KaelinJr)在研究腎癌的抑制劑過程中使用的輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內(nèi)勻速滴下液體(滴管內(nèi)液體忽略不計(jì)),設(shè)輸液開始后分鐘,瓶內(nèi)液面與進(jìn)氣管的距離為厘米,已知當(dāng)時,.如果瓶內(nèi)的藥液恰好分鐘滴完.則函數(shù)的圖像為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對一切實(shí)數(shù)都有成立,且.

1)求的值;

2)求的解析式;

3)已知,設(shè):當(dāng)時,不等式恒成立;:當(dāng)時,是單調(diào)函數(shù).如果滿足成立的的集合記為,滿足成立的的集合記為,求為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)上一動點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選擇合適的抽樣方法抽樣,寫出抽樣過程.

1)有甲廠生產(chǎn)的30個籃球,其中一箱21個,另一箱9個,抽取3個;

2)有30個籃球,其中甲廠生產(chǎn)的有21個,乙廠生產(chǎn)的有9個,抽取10.

查看答案和解析>>

同步練習(xí)冊答案