19.方程ex-x-6=0的一個(gè)根所在的區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 本題考查的是方程零點(diǎn)存在的大致區(qū)間的判斷問題.在解答時(shí),應(yīng)先將方程的問題轉(zhuǎn)化為函數(shù)零點(diǎn)大致區(qū)間的判斷問題,結(jié)合零點(diǎn)存在性定理即可獲得解答.

解答 解:令f(x)=ex-x-6,
∵f(2)=7.39-8<0,f(3)=20.09-9>0,
∴方程ex-x-6=0的一個(gè)根所在的區(qū)間為(2,3).
故選:D.

點(diǎn)評(píng) 本題考查的是方程零點(diǎn)存在的大致區(qū)間的判斷問題.在解答的過程當(dāng)中充分體現(xiàn)了函數(shù)與方程的思想、問題轉(zhuǎn)化的思想以及數(shù)據(jù)處理的能力.值得同學(xué)們體會(huì)和反思.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知x>1,y>2,且xy=2x+y+6,則x+2y的最小值是( 。
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=3tan($\frac{x}{2}$+$\frac{π}{3}$)的最小正周期為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.為得到函數(shù)y=-sin2x的圖象,可將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向左平移$\frac{π}{6}$個(gè)單位
C.向右平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{2π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列命題中為真命題的是( 。
A.命題“若α=β,則tanα=tanβ”的逆否命題為假命題
B.“x>1”是“x2-1>0”的必要不充分條件
C.“m>0>n”是“$\frac{1}{m}$>$\frac{1}{|n|}$”的充分不必要條件
D.命題“?a>1,a2+2a-3<0”的否定是:“?a≤1,a2+2a-3≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)命題p:函數(shù)y=kx+1在R上是增函數(shù),命題q:?x∈R,x2+(2k-3)x+1=0,如果p∧q是假命題,p∨q是真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$ (t為參數(shù)),若以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-$\frac{π}{4}$).
(1)求直線l的傾斜角和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),設(shè)點(diǎn)P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合M={x|y=$\sqrt{x-1}}$},N={y|y=$\sqrt{x-1}$},則M與N的關(guān)系為(  )
A.M=NB.M⊆NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,b=3,c=6,B=45°,則此三角形解的情況是(  )
A.一解B.兩解C.一解或兩解D.無(wú)解

查看答案和解析>>

同步練習(xí)冊(cè)答案