已知PQ與圓O相切于點A,直線PBC交圓于B、C兩點,D是圓上一點,且AB∥CD,DC的延長線交PQ于點Q.
(1)求證:
(2)若AQ=2AP,AB=,BP=2,求QD.
(1)證明過程詳見解析;(2)

試題分析:本題主要考查同位角、弦切角、相似三角形、切線的性質、切割線定理等基礎知識,考查學生的邏輯推理能力、分析問題解決問題的能力、轉化能力.第一問,先利用同位角相等得到∠PAB=∠AQC,再利用弦切角相等,得到,同理,AQ為切線,則∠QAC=∠CBA,所有得到三角形相似,利用相似得性質得邊的比例關系;第二問,由AB//CQ,利用平行線的性質得,得到QC和PC的長,利用切線的性質,得,,得到QD的值.
(1)因為AB∥CD,所以∠PAB=∠AQC, 又PQ與圓O相切于點A,所以∠PAB=∠ACB,
因為AQ為切線,所以∠QAC=∠CBA,所以△ACB∽△CQA,所以,
所以           5分
(2)因為AB∥CD,AQ=2AP,所以,由AB=,BP=2得,PC=6
為圓O的切線
又因為為圓O的切線            10分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,PA,PB切⊙O于A,B兩點,BC∥PA交⊙O于C,MC∥AB交⊙O于D,交PB,PA的延長線于M,Q.
(1)求證:AD∥PM
(2)設⊙O的半徑長為1,PA=PB=2,求CD的長

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為半圓的直徑,,為半圓上一點,過點作半圓的切線,過點作,交半圓于點

(1)證明:平分;
(2)求的長.                  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,圓的兩弦交于點,,的延長線于點.求證:△∽△

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,以AB為直徑的圓O交AC于D,過點D作圓O的切線交BC于E,AE交圓O于點F.求證:

(1)E是BC的中點;
(2)AD·AC=AE·AF.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知AB是圓O的直徑,C為圓O上一點,CD⊥AB于點D,弦BE與CD、AC分別交于點M、N,且MN=MC

(1)求證:MN=MB;
(2)求證:OC⊥MN。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,是圓的內接三角形,的平分線交圓于點,交于點,過點的圓的切線與的延長線交于點.在上述條件下,給出下列四個結論:

則所有正確結論的序號是
A.①②B.③④C.①②③D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,C是半圓O上異于A,B的點,CD⊥AB,垂足為D,已知AD=2,CB=4,則CD=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2013•湖北)如圖,圓O上一點C在直徑AB上的射影為D,點D在半徑OC上的射影為E.若AB=3AD,則的值為 _________ 

查看答案和解析>>

同步練習冊答案