(本小題滿分12分)
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標(biāo)原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當(dāng)時,求面積的最大值.
(1)(2)當(dāng)時,面積的最大值為.

試題分析:因為點在橢圓上,所以
   

(2)設(shè),
 

設(shè)直線,由,得:


到直線的距離 

當(dāng)且僅當(dāng)
所以當(dāng)時,面積的最大值為.
點評:解決該試題的關(guān)鍵是利用向量的數(shù)量積和點在曲線上得到a,b,c的關(guān)系式,進而得到方程。同時能利用聯(lián)立方程組,結(jié)合韋達定理來表示弦長,結(jié)合點到直線的距離求解最值,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點且與雙曲線有相同漸近線方程的雙曲線的標(biāo)準(zhǔn)方程為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P為拋物線上一個動點,Q為圓上一個動點,那么點P到點Q的距離與點P到軸距離之和最小值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點與雙曲線的右焦點重合,則的值          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知點,,△的周長為6.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)過點的直線與曲線相交于不同的兩點.若點軸上,且,求點的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)
在平面內(nèi),已知橢圓的兩個焦點為,橢圓的離心率為 ,點是橢圓上任意一點, 且,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)以橢圓的上頂點為直角頂點作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0)的左、右焦點,過F1的直線的左、右兩支分別交于A,B兩點.若 | AB | : | BF2 | : | AF2 |=3:4 : 5,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知橢圓的左、右準(zhǔn)線分別為,且分別交軸于兩點,從上一點發(fā)出一條光線經(jīng)過橢圓的左焦點軸反射后與交于點,若,且,則橢圓的離心率等于        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F(xiàn)1,F(xiàn)2是雙曲線的左、右焦點,過F1的直線l與C的左、右兩支分別交于A,B兩點.若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

同步練習(xí)冊答案