已知函數(shù).
(1)當時,證明:在上為減函數(shù);
(2)若有兩個極值點求實數(shù)的取值范圍.
(1)用導(dǎo)數(shù)來證明 (2)
解析試題分析:(1)證明:時,,,
時,;時,;
在區(qū)間遞增,在區(qū)間遞減;
,即在上恒成立,在遞減.
(2)解:若有兩個極值點,則是方程的兩個根,故方程有兩個根,又顯然不是該方程的根,所以方程有兩個根,
設(shè)當時,且單調(diào)遞減,
當時,當時,單調(diào)遞減,當時,單調(diào)遞增,要使方程有兩個根,需即且故的取值范圍為
考點:利用導(dǎo)數(shù)研究函數(shù)的極值及單調(diào)性.
點評:本題考查了導(dǎo)數(shù)在解決函數(shù)極值和證明不等式中的應(yīng)用,解題時要認真求導(dǎo),防止錯到起點,還要有數(shù)形結(jié)合的思想,提高解題速度.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,其中.
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有≥成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù),記的導(dǎo)函數(shù),的導(dǎo)函數(shù)
,
的導(dǎo)函數(shù),…,的導(dǎo)函數(shù),.
(1)求;
(2)用n表示;
(3)設(shè),是否存在使最大?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象過點,且點處的切線方程為在.
(1)求函數(shù)的解析式; (2)求函數(shù)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)命題p:函數(shù)的定義域為R;命題q:不等式對任意恒成立.
(Ⅰ)如果p是真命題,求實數(shù)的取值范圍;
(Ⅱ)如果命題“p或q”為真命題且“p且q”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對于定義在實數(shù)集上的兩個函數(shù),若存在一次函數(shù)使得,對任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”,F(xiàn)已知(,為自然對數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當時,函數(shù)是否存在過點的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)如果x∈[1,4],求函數(shù)h(x)=(f(x)+1)g(x)的值域;
(2)求函數(shù)M(x)=的最大值;
(3)如果不等式f(x2)f()>kg(x)對x∈[2,4]有解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù))是實數(shù)集上的奇函數(shù).
(1)求的值;
(2)試討論函數(shù)的零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com