已知a是實數(shù),函數(shù)f(x)=x3-ax2-4x+4a.
(1)若f′(-1)=0,求實數(shù)a的值;
(2)若函數(shù)f(x)在(-∞,-2)和(2,+∞)上都是單調(diào)遞增的,求實數(shù)a的取值范圍.
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的綜合應用
分析:(1)求函數(shù)的導數(shù),根據(jù)f′(-1)=0,即可求實數(shù)a的值;
(2)根據(jù)函數(shù)的單調(diào)區(qū)間得f′(x)=0的兩解必在[-2,2]內(nèi),建立條件關系即可得到結(jié)論.
解答: 解:(1)∵f(x)=x3-ax2-4x+4a.
∴f′(x)=3x2-2ax-4.
由f′(-1)=0,得3+2a-4=0,解得a=
1
2
;
(2)由f(x)在(-∞,-2)和(2,+∞)上都是單調(diào)遞增.
則f′(x)=0的兩解必在[-2,2]內(nèi).
得f′(-2)≥0且f′(2)≥0,
12+4a-4≥0
12-4a-4≥0
,得
a≥-2
a≤2
,解得-2≤a≤2,
∴a的取值范圍為[-2,2].
點評:本題主要考查函數(shù)的單調(diào)性和導數(shù)之間的關系,要求熟練掌握導數(shù)在函數(shù)中的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在程序框圖中處理框的功能表示( 。
A、輸入信息
B、輸出信息
C、賦值,計算
D、一個算法的起始和結(jié)束

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在幾何體ABCDE中,CA=CB=2,CA⊥CB,CD⊥平面ABC,F(xiàn)為線段AB的中點,EF∥CD,EF=CD=
2

(Ⅰ)求證:平面ABE⊥平面ADE.
(Ⅱ)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知無窮等差數(shù)列{an}的首項a1=1,公差d>0,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)設數(shù)列{bn}對任意n∈N*,都有a1b1+a2b2+…+anbn=an成立.
①求數(shù)列{bn}的通項公式;
②求數(shù)列{bnbn+1}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=k2x4-
2
3
x3-kx2+2x
,是否存在實數(shù)k,使函數(shù)在(1,2)上遞減,在(2,+∞)上遞增?若存在,求出所有k值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某籃球賽甲、乙兩隊進入最后決賽,其中甲隊有6名打前鋒位,4名打后位,另有2名既能打前鋒位又能打后位的全能型隊員;乙隊有4名打前鋒位,3名打后位,另有5名既能打前鋒位又能打后位的全能型隊員.問:
(1)甲隊有多少種不同的出場陣容?
(2)乙隊又有多少種不同的出場陣容?(注:每種出場陣容中含3名前鋒位和2名后位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的導數(shù):
(1)y=2x
(2)y=lnx
(3)y=x3+cosx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1≠0,2an=a1(1+Sn)(n∈N*),Sn為數(shù)列{an}的前n項和.
(1)求數(shù)列{an}的通項公式an
(2)設bn=nSn,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,設內(nèi)角A、B、C的對邊分別為a、b、c,且cos(A+
π
4
)+cos(A-
π
4
)=
2
2

(1)求角A的大;
(2)若a=4,求△ABC面積的最大值.

查看答案和解析>>

同步練習冊答案