證明:若函數(shù)在點處可導(dǎo),則函數(shù)在點處連續(xù).
科目:高中數(shù)學(xué) 來源: 題型:
(05年遼寧卷)(12分)
函數(shù)在區(qū)間內(nèi)可導(dǎo),導(dǎo)函數(shù)是減函數(shù),且.設(shè),是曲線在點處的切線方程,并設(shè)函數(shù).
(Ⅰ)用、、表示m;
(Ⅱ)證明:當,;
(Ⅲ)若關(guān)于x的不等式在上恒成立,其中a、b為實數(shù),求b的取值范圍及a與b所滿足的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
證明:若函數(shù)在點處可導(dǎo),則函數(shù)在點處連續(xù).
個是趨向的轉(zhuǎn)化,另一個是形式(變?yōu)閷?dǎo)數(shù)定義形式)的轉(zhuǎn)化.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建莆田一中高三上學(xué)期第一學(xué)段考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)其中,曲線在點處的切線方程為.
(I)確定的值;
(II)設(shè)曲線在點處的切線都過點(0,2).證明:當時,;
(III)若過點(0,2)可作曲線的三條不同切線,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),曲線在點處的切線方程為
(1)確定的值
(2)若過點(0,2)可做曲線的三條不同切線,求的取值范圍
(3)設(shè)曲線在點處的切線都過點(0,2),證明:當時,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com