19.對于下列表格所示的五個散點,已知求得的線性回歸直線方程為$\stackrel{∧}{y}$=0.8x-155.
x197198201204205
y1367m
則實數(shù)m的值為12.

分析 根據(jù)回歸直線經(jīng)過樣本數(shù)據(jù)中心點,求出y的平均數(shù),進(jìn)而可求出t值.

解答 解:由題意,$\overline{x}$=$\frac{1}{5}$(197+198+201+204+205)=201,$\overline{y}$=$\frac{1}{5}$(1+3+6+7+m)=$\frac{17+m}{5}$,
代入$\widehat{y}$=0.8x-155,可得 $\frac{17+m}{5}$=0.8×201-155,m=12,
故答案為:12.

點評 本題考查線性回歸方程的求法和應(yīng)用,是一道基礎(chǔ)題,這種題目解題的關(guān)鍵是求出平均數(shù),代入回歸直線方程,注意數(shù)字的運(yùn)算不要出錯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)已知$a>0,b>0且a+b>2,求證:\frac{1+b}{a},\frac{1+a}$中至少有一個小于2.
(2)已知a>0,$\frac{1}$-$\frac{1}{a}$>1,求證:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,若acosA=bsinB,則sinAcosA+cos2B=( 。
A.1B.$\frac{1}{2}$C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.使奇函數(shù)f(x)=sin(2x+θ)+$\sqrt{3}$cos(2x+θ)在[-$\frac{π}{4}$,0]上為減函數(shù)的θ(θ∈(0,π))的值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$是單位向量,若$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=2,$\overrightarrow$•($\overrightarrow{a}$+$\overrightarrow$)=4,則|$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|lnx≤0},B={x∈R|z=x+i,$|z|≥\frac{{\sqrt{5}}}{2}$,i是虛數(shù)單位},A∩B=( 。
A.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{2},1}]$B.$[{\frac{1}{2},1}]$C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}的前n項和為Sn,且滿足${S_n}={(-1)^n}{a_n}+\frac{1}{2^n}$,設(shè){Sn}的前n項和為Tn,T2017=$\frac{1}{3}[1-(\frac{1}{2})^{2016}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列{an}的前n項和為Sn,若${a_n}=\frac{1}{(n+1)(n+2)}$,則S8=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=sinx與y=cosx在x∈[0,$\frac{π}{2}$]內(nèi)的交點為P,在點P處兩函數(shù)的切線與x軸所圍成的三角形的面積為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案