已知集合P={x||x-2|<1},函數(shù)y=
log
1
2
(x-1)
的定義城為Q,則Q∩P=( 。
分析:解絕對值不等式求得集合P,解對數(shù)不等式求得Q,再根據(jù)交集的定義求得Q∩P.
解答:解:∵P={x|-1<x-2<1}={x|1<x<3},
Q={x|log
1
2
(x-1)
≥0=log
1
2
1
}={x|0<x-1≤1}={x|1<x≤2},
故Q∩P={x|1<x≤2},
故選B.
點評:本題主要考查求函數(shù)的定義域,絕對值不等式、對數(shù)不等式的解法,兩個集合的交集的定義和求法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合P={x|1≤x≤10,x∈N },集合Q={ x|x2+x-6≤0,x∈R },則P∩Q=
{1,2}
{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={(x,y)|y=
2-x2
}
,Q={(x,y)|y=-x+m},若P∩Q≠∅,則實數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列從P到Q的各對應關系f不是函數(shù)的是
.(填序號)
f:x→y=
1
2
x
;  ②f:x→y=
1
3
x
;  ③f:x→y=
2
3
x
; ④f:x→y=
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|2≤x≤7},Q={x|x2-x-6=0,x∈R},則集合P∩Q是
{3}
{3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|x2=1},集合Q={x|ax=1},若P∩Q=Q,那么a的值是
1或-1或0
1或-1或0

查看答案和解析>>

同步練習冊答案