已知函數(shù).
(1)求函數(shù)的對(duì)稱軸方程和單調(diào)遞增區(qū)間;
(2)若中,分別是角的對(duì)邊,且,,求的面積.
(1) ,;(2).
解析試題分析:(1)
2分
,即
對(duì)稱軸方程為 4分
又,
單調(diào)遞增區(qū)間為 6分
(2),
8分
又,由正弦定理得 10分
①當(dāng)時(shí),由余弦定理得,
又,,
12分
②當(dāng)時(shí),得,又,,
,所以不符合條件
綜上:的面積為. 14分
考點(diǎn):本題考查了三角函數(shù)的變換及性質(zhì)、正余弦定理的運(yùn)用
點(diǎn)評(píng):此類問題比較綜合,除了考查三角函數(shù)恒等變換、性質(zhì)外,還綜合考查了正余弦定理的運(yùn)用,解題時(shí)注意分類討論思想的運(yùn)用
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,且.
(1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;
(2)若,求函數(shù)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)遞增區(qū)間;
(2)當(dāng)且時(shí),的值域是求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)·(其中>o),且函數(shù)的最小正周期為
(I)求f(x)的最大值及相應(yīng)x的取值
(Ⅱ)將函數(shù)y= f(x)的圖象向左平移單位長(zhǎng)度,再將所得圖象各點(diǎn)的橫坐標(biāo)縮小為原來的倍(縱坐標(biāo)不變)得到函數(shù)y=g(x)的圖象.求函數(shù)g(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為坐標(biāo)原點(diǎn),對(duì)于函數(shù),稱向量為函數(shù)的伴隨向量,同時(shí)稱函數(shù)為向量的伴隨函數(shù).
(Ⅰ)設(shè)函數(shù),試求的伴隨向量的模;
(Ⅱ)記的伴隨函數(shù)為,求使得關(guān)于的方程在內(nèi)恒有兩個(gè)不相等實(shí)數(shù)解的實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)當(dāng)時(shí),求函數(shù)的最值及相應(yīng)的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對(duì)稱,當(dāng)時(shí),函數(shù),其圖象如圖
(1)求函數(shù)在的表達(dá)式;
(2)求方程的解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com