關(guān)于實數(shù)x的不等式|x-(a+1)2|(a-1)2x2-3(a+1)x+2(3a+1)0(aR)的解集分別為A,B.求使AB成立的a的取值范圍.

 

a=-11a3

【解析】由不等式|x-(a+1)2|(a-1)2

-(a-1)2x-(a+1)2(a-1)2,

解得2axa2+1,

于是A={x|2axa2+1}.

由不等式x2-3(a+1)x+2(3a+1)0(x-2)[x-(3a+1)]0,

①當(dāng)3a+12,a,B={x|2x3a+1},

因為AB,所以必有

解得1a3;

②當(dāng)3a+1<2,a<,B={x|3a+1x2},

因為AB,所以

解得a=-1.

綜上,使ABa的取值范圍是a=-11a3.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

已知數(shù)列{an}為等差數(shù)列,a3+a7+a11=4π,tan(a1+a13)=(  )

(A)-(B)±(C)±(D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十八選修4-4第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知直線l的參數(shù)方程:(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2sin(θ+),判斷直線和圓C的位置關(guān)系.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:解答題

近幾年來,我國許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進行人工降雨.現(xiàn)由天氣預(yù)報得知,某地在未來5天的指定時間的降雨概率是:3天均為50%,2天均為80%,5天內(nèi)任何一天的該指定時間沒有降雨,則在當(dāng)天實行人工降雨,否則,當(dāng)天不實施人工降雨.

(1)求至少有1天需要人工降雨的概率.

(2)求不需要人工降雨的天數(shù)x的分布列和期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:選擇題

已知隨機變量XB(6,),P(-2X5.5)=(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十九選修4-5第一節(jié)練習(xí)卷(解析版) 題型:解答題

設(shè)f(x)=x2-bx+c,不等式f(x)<0的解集是(-1,3),f(7+|t|)>f(1+t2),求實數(shù)t的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:解答題

某班主任對全班50名學(xué)生進行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有18,認(rèn)為作業(yè)不多的有9,不喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有8,認(rèn)為作業(yè)不多的有15.

(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表.

(2)有多大的把握認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān)系”?

(參考數(shù)值:5.059)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題

求經(jīng)過極點O(0,0),A(6,),B(6,)三點的圓的極坐標(biāo)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知都是正數(shù),且,則的最小值為 .

 

查看答案和解析>>

同步練習(xí)冊答案