如圖,在四棱錐中,平面平面,,是等邊三角形,已知.

(1)設(shè)上的一點,證明:平面平面;
(2)求二面角的余弦值.

(1)詳見試題解析;(2)二面角的余弦值為.

解析試題分析:(1)由勾股定理得:。根據(jù)面面垂直的性質(zhì)定理,可得平面
再由面面垂直的判定定理得:平面平面;
(2)思路一、由于,故可以為原點建立空間直角坐標系,利用向量方法可求得二面角的余弦值.
思路二、作出二面角的平面角,然后求平面角的余弦值.
由(1)知平面,所以平面平面
的垂線,該垂線即垂直平面
再過垂足作的垂線,將垂足與點連起來,便得二面角的平面角
試題解析:(1)證明:在中,由于,,,
,故.
,
,,又,
故平面平面                                             5分
(2)法一、如圖建立空間直角坐標系,, ,

  , .
設(shè)平面的法向量, 由
, .
設(shè)平面的法向量,
,令

,二面角的余弦值為          12分
法二、

由(1)知平面,所以平面平面
,則平面
再過

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.

(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,底面, 的中點,.

(1)求證:平面;
(2)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)如圖,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求證:P,Q,R三點共線.

(2)如圖,空間四邊形ABCD中,E,F分別是AB和CB上的點,G,H分別是CD和AD上的點,  且EH與FG相交于點K. 求證:EH,BD,FG三條直線相交于同一點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,底面為直角梯形的四棱錐中,AD∥BC,平面, ,BC=6.

(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,底面,上一點

(1)求證:平面平面
(2)設(shè),,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正三棱柱中,點的中點.

(Ⅰ)求證: 平面;
(Ⅱ)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 三棱柱ABC-A1B1C1中, 側(cè)棱A1A⊥底面ABC,且各棱長均相等. D, E, F分別為棱AB, BC, A1C1的中點.

(Ⅰ) 證明EF//平面A1CD;
(Ⅱ) 證明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直線BC與平面A1CD所成角的正弦值.

查看答案和解析>>

同步練習冊答案