【題目】已知集合A={x∈R|0≤x≤4},B={x∈R|x2≥9},則A∪(RB)等于( )
A.[0,3)
B.(﹣3,4]
C.[3,4]
D.(﹣∞,﹣3)∪[0,+∞)
【答案】B
【解析】解:A={x∈R|0≤x≤4}=[0,4],
B={x∈R|x2≥9}={x|x≥3或x≤﹣3},
則RB=(﹣3,3),
則A∪(RB)=(﹣3,4],
故選:B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí),掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題中正確的是( )
A.若α⊥β,mα,nβ,則m⊥n
B.若m⊥α,m∥n,n∥β,則α⊥β
C.若m⊥n,mα,nβ,則α⊥β
D.若α∥β,mα,nβ,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈(1,+∞),x3+16>8x,則命題p的否定為( )
A.¬p:x∈(1,+∞),x3+16≤8x
B.¬p:x∈(1,+∞),x3+16<8x
C.¬p:x0∈(1,+∞),x03+16≤8x0
D.¬p:x0∈(1,+∞),x03+16<8x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題“若自然數(shù)a,b,c的積為偶數(shù),則a,b,c中至少有一個(gè)偶數(shù)”時(shí),對(duì)結(jié)論正確的反設(shè)為( )
A.a,b,c中至多有一個(gè)偶數(shù)
B.a,b,c都是奇數(shù)
C.a,b,c至多有一個(gè)奇數(shù)
D.a,b,c都是偶數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,mβ,則α⊥β;
②若mα,nα,m∥β,n∥β,則α∥β;
③若α∩β=m,n∥m,且nα,nβ,則n∥α且n∥β
其中正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1+2x)6展開(kāi)式中含x2項(xiàng)的系數(shù)為( )
A.15
B.30
C.60
D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義“規(guī)范03數(shù)列”{an}如下:{an}共有2m項(xiàng),其中m項(xiàng)為0,m項(xiàng)為3,且對(duì)任意k≤2m,a1 , a2 , …,ak中0的個(gè)數(shù)不少于3的個(gè)數(shù),若m=4,則不同的“規(guī)范03數(shù)列”共有( )
A.18個(gè)
B.16個(gè)
C.14個(gè)
D.12個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com