7.將大于0不大于15且除以4余3的整數(shù)構(gòu)成的集合分別用列舉法和描述法表示出來(lái).

分析 根據(jù)列舉法和描述法的定義分別進(jìn)行表示.

解答 解:由大于0不大于15且除以4余3的整數(shù),所以用列舉法表示解集為{3,7,11,15}.
用描述法表示為{x|x=4n-1,n=1,2,3,4}

點(diǎn)評(píng) 本題主要考查集合表示的兩種方法:列舉法和描述法,比較基礎(chǔ),主要它們之間的區(qū)別.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=2mlnx-x2,g(x)=ex-2mlnx(m∈R),ln2=0.693.
(1)討論f(x)的單調(diào)性;
(2)若f(x)存在最大值M,g(x)存在最小值N,且M≥N,求證:m>$\frac{e}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合P={x|1≤x<4},Q={x|2≤x≤5,x∈N},則P∩Q=( 。
A.B.{x|2≤x<4}C.{x|1≤x<5}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.下列函數(shù)中哪個(gè)與函數(shù)y=$\sqrt{-2{x}^{3}}$相同.
(1)y=x$\sqrt{-2x}$;
(2)y=-x$\sqrt{-2x}$;
(3)y=-$\sqrt{2{x}^{3}}$;
(4)y=x2$\sqrt{\frac{-2}{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f(x)=$\sqrt{x}$+$\frac{1}{\sqrt{4-x}}$,則f(x)的定義域?yàn)閇0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,已知a=2$\sqrt{2}$,b=$\sqrt{3}$,∠C=60°,則△ABC的面積為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知復(fù)數(shù)z1=2+i、z2=1+2i所對(duì)應(yīng)的點(diǎn)分別是A、B,O是坐標(biāo)原點(diǎn).
(1)寫(xiě)出$\overrightarrow{OA}$、$\overrightarrow{OB}$的坐標(biāo);
(2)求∠BOA的正弦值;(提示:利用余弦定理)
(3)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知命題p:?x∈R,使2$\sqrt{3}$sinx+2cosx>m成立,命題q:?x∈R,x2+mx+1>0恒成立,若有p∧q為假,p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\frac{201{7}^{x+1}+2016}{201{7}^{x}+1}$+2016sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的最大值為M,最小值為N,那么M+N=4033.

查看答案和解析>>

同步練習(xí)冊(cè)答案