積分
2
-1
e
|x|
 
dx
的值是
 
考點:定積分
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:把給出的積分區(qū)間分段,分別求在兩段區(qū)間上的定積分得答案.
解答: 解:
2
-1
e
|x|
 
dx

=
0
-1
e-xdx
+∫
2
0
exdx

=-e-x
|
0
-1
+ex
|
2
0

=-e0+e+e2-e0
=-1+e+e2-1
=e2+e-2.
故答案為:e2+e-2.
點評:本題考查定積分,解答的關(guān)鍵是把要求的定積分轉(zhuǎn)化為(-1,0)和(0,2)上的定積分求解,被積函數(shù)不含絕對值,易于求解被積函數(shù)的原函數(shù),是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個結(jié)論中,正確的結(jié)論是(  )
①已知奇函數(shù)f(x)在[a,b]上是減函數(shù),則它在[-b,-a]上是減函數(shù);
②已知函數(shù)f(x)=4x2-kx-8在[5,20]上具有單調(diào)性,則k的取值范圍是[40,160];
③在區(qū)間(0,+∞)上,函數(shù)y=x-1,y=x
1
2
,y=x
1
3
,y=x3中有3個函數(shù)是增函數(shù);
④若logm3<logn3<0,則0<n<m<1.
A、①②③④B、①②③
C、①③④D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大。
(2)直線B1C1到平面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知命題p:?x∈R,tanx=2,命題q:?x∈R,x2-x+1≥0,則命題p∧q為真;
②函數(shù)f(x)=2x+2x-3在定義域內(nèi)有且只有一個零點;
③數(shù)列{an}滿足:a1=2068,且an+1+an+n2=0(n∈N*),則a11=2013;
④設(shè)0<x<1,則
a2
x
+
b2
1-x
的最小值為(a+b)2
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)滿足:f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時,y=f(x)單調(diào)遞減,給出以下四個命題:
①f(2)=0;  
②x=4是函數(shù)y=f(x)圖象的一條對稱軸;  
③函數(shù)y=f(x)在區(qū)間[6,8]上單調(diào)遞增;
④若方程f(x)=0.在區(qū)間[-2,2]上有兩根為x1,x2,則x1+x2=0.
以上命題正確的是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2-2x
,當(dāng)x>1時,不等式k(x-1)<xf(x)+2g′(x)+3恒成立,則整數(shù)k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-
x
)20
的展開式中,系數(shù)為有理數(shù)的項共有
 
項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(xA,yA),B(xB,yB)為平面直角坐標(biāo)系上的兩點,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,則稱點B為點A的“相關(guān)點”,記作:B=τ(A),已知P0(x0,y0),(x0,y0∈Z)為平面上一個定點,平面上點列{Pi}滿足:Pi=τ(Pi-1),且點Pi的坐標(biāo)為(xi,yi),其中i=1,2,3,…,n,則點P0的“相關(guān)點”有( 。﹤.
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=8,|
b
|=6,且|
a
+
b
|=|
a
-
b
|,求|
a
-
b
|.

查看答案和解析>>

同步練習(xí)冊答案