精英家教網 > 高中數學 > 題目詳情
已知f(x)=2ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實數a的值;
(Ⅱ)若關于x的方程f(x)+b=0在區(qū)間[-1,1]上恰有兩個不同的實數根,求實數b的取值范圍.
(Ⅰ)f′(x)=
2
x+a
-2x-1
,當x=0時,f(x)取得極值,
∴f'(x)=0,解得a=2,檢驗a=2符合題意.
(Ⅱ)令g(x)=f(x)+b=2ln(x+2)-x2-x+b,則 g′(x)=
2
x+2
-2x-1(x>-2)

當x∈(-2,0)時,g'(x)>0,∴g(x)在(-2,0)上單調遞增;
當x∈(0,+∞)時,g'(x)<0,∴g(x)在(0,+∞)上單調遞減,
要使f(x)+b=0在區(qū)間[-1,1]上恰有兩個不同的實數根,
只需
g(-1)≤0
g(0)>0
g(1)≤0
b≤0
2ln2+b>0
2ln3-2+b≤0

∴-2ln2<b≤2-2ln3.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=2ln(ex+1)-ax(a>0),若f′(x)是奇函數,則a=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=2ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實數a的值;
(Ⅱ)若關于x的方程f(x)+b=0在區(qū)間[-1,1]上恰有兩個不同的實數根,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•鹽城模擬)已知f(x)為R上的偶函數,當x≥0時,f(x)=ln(x+2).
(Ⅰ)當x<0時,求f(x)的解析式;
(Ⅱ)當m∈R時,試比較f(m-1)與f(3-m)的大小;
(Ⅲ)求最小的整數m(m≥-2),使得存在實數t,對任意的x∈[m,10],都有f(x+t)≤2ln|x+3|.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖北省黃岡中學高二(下)期末數學試卷(理科)(解析版) 題型:解答題

已知f(x)=2ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實數a的值;
(Ⅱ)若關于x的方程f(x)+b=0在區(qū)間[-1,1]上恰有兩個不同的實數根,求實數b的取值范圍.

查看答案和解析>>

同步練習冊答案