【題目】在數(shù)列{an}中,設(shè)f(n)=an , 且f(n)滿足f(n+1)﹣2f(n)=2n(n∈N*),且a1=1.
(1)設(shè) ,證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

【答案】
(1)證明:由已知得

,

∴bn+1﹣bn=1,

又a1=1,∴b1=1,

∴{bn}是首項為1,公差為1的等差數(shù)列


(2)解:由(1)知, ,∴

,

兩邊乘以2,得 ,

兩式相減得 =2n﹣1﹣n2n=(1﹣n)2n﹣1,


【解析】(1)利用遞推關(guān)系可得bn+1﹣bn=1,即可證明.(2)利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點,,

.

(1)求證:;

(2)若平面與平面所成的銳二面角的大小為,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)的兩點P,Q滿足條件:①P,Q都在函數(shù)y=f(x)的圖象上;②P,Q關(guān)于原點對稱,則稱點對(P,Q)是函數(shù)y=f(x)的一對“友好點對”(點對(P,Q)與(Q,P)看作同一對“友好點對”).已知函數(shù)f(x)= ,則此函數(shù)的“友好點對”有(
A.3對
B.2對
C.1對
D.0對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F

(1)求證:ABEF;

(2)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線

(1)若曲線C1是一個圓,且點P(1,1)在圓C1外,求實數(shù)m的取值范圍;

(2)當(dāng)m=2時,曲線關(guān)于直線x+1=0對稱的曲線為,設(shè)P為平面上的點,滿足:存在過P點的無窮多對互相垂直的直線,它們分別與曲線C1和曲線相交,且直線被曲線C1截得的弦長與直線l2被曲線C2截得的弦長總相等.求所有滿足條件的點P的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有兩個紅球和兩個黑球的口袋內(nèi)任取兩個球,那么互斥而不對立的兩個事件是(

A. 至少有一個黑球都是紅球

B. 至少有一個黑球至少有一個紅球

C. 至少有一個黑球都是黑球

D. 恰有一個黑球恰有兩個黑球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是圓上任意一點,點與點關(guān)于原點對稱,線段的垂直平分線與交于.

(1)求點的軌跡的方程;

(2)過點的動直線與點的軌跡交于兩點,在軸上是否存在定點使以為直徑的圓恒過這個點?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.
(3)探討函數(shù)F(x)=lnx﹣ + 是否存在零點?若存在,求出函數(shù)F(x)的零點,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O:經(jīng)過點,與x軸正半軸交于點B.

______;將結(jié)果直接填寫在答題卡的相應(yīng)位置上

O上是否存在點P,使得的面積為15?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案