【題目】下列結(jié)論正確的是( ).
A.“,互為共軛復(fù)數(shù)”是“”的充分不必要條件
B.如圖,在復(fù)平面內(nèi),若復(fù)數(shù),對(duì)應(yīng)的向量分別是,,則復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為
C.若函數(shù)恰在上單調(diào)遞減,則實(shí)數(shù)的值為4
D.函數(shù)在點(diǎn)處的切線方程為
【答案】ABD
【解析】
利用充分條件和必要條件,即可判斷A的正誤;因?yàn)閺?fù)數(shù)對(duì)應(yīng)的坐標(biāo)即為的坐標(biāo),根據(jù)圖形求出,坐標(biāo),即可判斷B的正誤;由函數(shù)恰在上單調(diào)遞減,可得是的兩根,利用根與系數(shù)的關(guān)系,即可求出并判斷C的正誤;求出在點(diǎn)處的切線方程,即可判斷D的正誤.
對(duì)A,設(shè),則,所以,故充分性成立;
當(dāng),,此時(shí),但,不互為共軛復(fù)數(shù),故必要性不成立.
所以“,互為共軛復(fù)數(shù)”是“”的充分不必要條件.
故 A正確.
對(duì)B,由圖可知,,所以,
故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為.
故B正確.
對(duì)C,,因?yàn)楹瘮?shù)恰在上單調(diào)遞減,
所以的解集恰好是,故是方程的兩根,
所以.
故C錯(cuò)誤.
對(duì)D,因?yàn)楹瘮?shù),所以,
所以在處切線斜率,
故切線方程為,即,
故D正確.
故選:ABD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線:的左右頂點(diǎn)分別為,,動(dòng)直線垂直的實(shí)軸,且交于不同的兩點(diǎn),直線與直線的交點(diǎn)為.
(1)求點(diǎn)的軌跡的方程;
(2)過點(diǎn)作的兩條互相垂直的弦,,證明:過兩弦,中點(diǎn)的直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為選拔,兩名選手參加某項(xiàng)比賽,在選拔測(cè)試期間,測(cè)試成績大于或等于80分評(píng)價(jià)為“優(yōu)秀”等級(jí),他們參加選拔的5次測(cè)試成績(滿分100分)記錄如下:
(1)從的成績中各隨機(jī)抽取一個(gè),求選手測(cè)試成績?yōu)?/span>“優(yōu)秀”的概率;
(2)從、兩人測(cè)試成績?yōu)?/span>“優(yōu)秀”的成績中各隨機(jī)抽取一個(gè),求的成績比低的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤,剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺(tái)工作人員裁減人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鯉魚是中國五千年文化傳承的載體之一,它既是拼搏進(jìn)取、敢于突破自我、敢于冒險(xiǎn)奮進(jìn)精神的載體,又是富裕、吉慶、幸運(yùn)的美好象征.某水產(chǎn)養(yǎng)殖研究所為發(fā)揚(yáng)傳統(tǒng)文化,準(zhǔn)備進(jìn)行“中國紅鯉”和“中華彩鯉”雜交育種實(shí)驗(yàn).研究所對(duì)200尾中國紅鯉和160尾中華彩鯉幼苗進(jìn)行2個(gè)月培育后,將根據(jù)體長分別選擇生長快的10尾中國紅鯉和8尾中華彩鯉作為種魚進(jìn)一步培育.為了解培育2個(gè)月后全體幼魚的體長情況,按照品種進(jìn)行分層抽樣,其中共抽取40尾中國紅鯉的體長數(shù)據(jù)(單位:)如下:
5 | 6 | 7 | 7.5 | 8 | 8.4 | 4 | 3.5 | 4.5 | 4.3 |
5 | 4 | 3 | 2.5 | 4 | 1.6 | 6 | 6.5 | 5.5 | 5.7 |
3.1 | 5.2 | 4.4 | 5 | 6.4 | 3.5 | 7 | 4 | 3 | 3.4 |
6.9 | 4.8 | 5.6 | 5 | 5.6 | 6.5 | 3 | 6 | 7 | 6.6 |
(1)根據(jù)以上樣本數(shù)據(jù)推斷,若某尾中國紅鯉的體長為,它能否被選為種魚?說明理由;
(2)通過計(jì)算得到中國紅鯉樣本數(shù)據(jù)平均值為,中華彩鯉樣本數(shù)據(jù)平均值為,求所有樣本數(shù)據(jù)的平均值;
(3)如果將8尾中華彩鯉種魚隨機(jī)兩兩組合,求體長最長的2尾組合到一起的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰梯形中,分別為的中點(diǎn) 為中點(diǎn),現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中.
(1)證明:;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點(diǎn),且.
(1)求的方程;
(2)試問:在軸的正半軸上是否存在一點(diǎn),使得的外心在上?若存在,求的坐標(biāo);若不存在,請(qǐng)說明理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F且與x軸垂直的直線交該拋物線于A,B兩點(diǎn),|AB|=4.
(1)求拋物線的方程;
(2)過點(diǎn)F的直線l交拋物線于P,Q兩點(diǎn),若△OPQ的面積為4,求直線l的斜率(其中O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0),其右焦點(diǎn)為F(1,0),離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)F作傾斜角為α的直線l,與橢圓C交于P,Q兩點(diǎn).
(ⅰ)當(dāng)時(shí),求△OPQ(O為坐標(biāo)原點(diǎn))的面積;
(ⅱ)隨著α的變化,試猜想|PQ|的取值范圍,并證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com