6.一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{6}$

分析 由已知中的三視圖可得:該幾何體是兩個以俯視圖為底面的四棱錐組成的組合體,進(jìn)而得到答案.

解答 解:由已知中的三視圖可得:該幾何體是兩個以俯視圖為底面的四棱錐組成的組合體,
底面底面面積為:1×1=1,
高均為:$\frac{\sqrt{2}}{2}$,
故體積V=2×$\frac{1}{3}$×1×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{3}$,
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,正確的是( 。
A.若輸入a,b,c的值依次為1,2,3,則輸出的值為5
B.若輸入a,b,c的值依次為1,2,3,則輸出的值為7
C.若輸入a,b,c的值依次為2,3,4,則輸出的值為8
D.若輸入a,b,c的值依次為2,3,4,則輸出的值為10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)雙曲線的虛軸長為2,焦距為$2\sqrt{3}$,則雙曲線的漸近線方程為( 。
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$或y=$±\sqrt{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.運(yùn)行如圖所示的程序框圖,若輸入的實(shí)數(shù)為2,則輸出的n為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若點(diǎn)A(2,2)在矩陣M=$[\begin{array}{l}{cosα}&{-sinα}\\{sinα}&{cosα}\end{array}]$對應(yīng)變換的作用下得到的點(diǎn)為$B(-1-\sqrt{3},-1+\sqrt{3})$,求矩陣M的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足xf′(x)+2f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{2e}$
(Ⅰ)求f(x)的表達(dá)式
(Ⅱ)求函數(shù)f(x)在[1,e2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足:${a_1}=\frac{1}{2},{a_1}+{a_2}+…+{a_n}={n^2}{a_n}(n∈{N^*})$
(1)求a2,a3;
(2)猜想{an}通項(xiàng)公式并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中曲線${C_1}:{x^2}+{y^2}=1$經(jīng)伸縮變換$\left\{{\begin{array}{l}{{x^2}=2x}\\{{y^2}=y}\end{array}}\right.$后得到曲線C2,在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C3的極坐標(biāo)方程為$ρ=\frac{-8}{ρ-6sinθ}$.
(1)求曲線C2的參數(shù)方程和C3的直角坐標(biāo)方程;
(2)設(shè)M為曲線C2上的一點(diǎn),又M向曲線C3引切線,切點(diǎn)為N,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個長方體被一個平面截去一部分后,所剩幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.36B.48C.64D.72

查看答案和解析>>

同步練習(xí)冊答案