【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對任意的 ,令 =mq-np,下面說法錯(cuò)誤的是(
A.若 共線,則 =0
B. =
C.對任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

【答案】B
【解析】解:對于A,若 共線,則有 =mq-np=0,故A正確;
對于B,因?yàn)? =pn-qm,而 =mq-np,所以有 ,故選項(xiàng)B錯(cuò)誤,
對于C, =λqm﹣λpn,而 )=λ(qm﹣pn)=λqm﹣λpn,故C正確,
對于D,( 2+( 2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=| |2| |2 , D正確;
故選B.
根據(jù)題意對選項(xiàng)逐一分析.若 共線,則有 =mq-np=0,故A正確;
因?yàn)? =pn-qm,而 =mq-np,所以有 ,故選項(xiàng)B錯(cuò)誤,
對于C, =λqm﹣λpn,而 )=λ(qm﹣pn)=λqm﹣λpn,故C正確,
對于D,( 2+( 2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=| |2| |2 , D正確;
得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某成衣批發(fā)店為了對一款成衣進(jìn)行合理定價(jià),將該款成衣按事先擬定的價(jià)格進(jìn)行試銷,得到了如下數(shù)據(jù):

批發(fā)單價(jià)x(元)

80

82

84

86

88

90

銷售量y(件)

90

84

83

80

75

68


(1)求回歸直線方程 ,其中
(2)預(yù)測批發(fā)單價(jià)定為85元時(shí),銷售量大概是多少件?
(3)假設(shè)在今后的銷售中,銷售量與批發(fā)單價(jià)仍然服從(1)中的關(guān)系,且該款成衣的成本價(jià)為40元/件,為使該成衣批發(fā)店在該款成衣上獲得更大利潤,該款成衣單價(jià)大約定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某書店銷售剛剛上市的某知名品牌的高三數(shù)學(xué)單元卷,按事先擬定的價(jià)格進(jìn)行5天試銷,每種單價(jià)試銷1天,得到如表數(shù)據(jù):

單價(jià)x(元)

18

19

20

21

22

銷量y(冊)

61

56

50

48

45

(1)求試銷5天的銷量的方差和yx的回歸直線方程;

(2)預(yù)計(jì)今后的銷售中,銷量與單價(jià)服從(1)中的回歸方程,已知每冊單元卷的成本是14元,

為了獲得最大利潤,該單元卷的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年被業(yè)界稱為(虛擬現(xiàn)實(shí)技術(shù))元年,未來技術(shù)將給教育、醫(yī)療、娛樂、商業(yè)、交通旅游等多領(lǐng)域帶來極大改變,某教育設(shè)備生產(chǎn)企業(yè)有甲、乙兩類產(chǎn)品,其中生產(chǎn)一件甲產(chǎn)品需團(tuán)隊(duì)投入15天時(shí)間, 團(tuán)隊(duì)投入20天時(shí)間,總費(fèi)用10萬元,甲產(chǎn)品售價(jià)為15萬元/件;生產(chǎn)一件乙產(chǎn)品需團(tuán)隊(duì)投入20天時(shí)間, 團(tuán)隊(duì)投入16天時(shí)間,總費(fèi)用15萬元,乙產(chǎn)品售價(jià)為25萬元/件, 、兩個(gè)團(tuán)隊(duì)分別獨(dú)立運(yùn)作.現(xiàn)某客戶欲以不超過200萬元訂購該企業(yè)甲、乙兩類產(chǎn)品,要求每類產(chǎn)品至少各3件,在期限180天內(nèi),為使企業(yè)總效益最佳,則最后交付的甲、乙兩類產(chǎn)品數(shù)之和為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個(gè)周期內(nèi)的圖象如圖所示,則函數(shù)的解析式為 . 直線y= 與函數(shù)y=f(x)(x∈R)圖象的所有交點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn), ,并且直線平分圓.

(1)求圓的方程;

(2)若直線與圓交于兩點(diǎn),是否存在直線,使得為坐標(biāo)原點(diǎn)),若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x2﹣lnx

1)求曲線fx)在點(diǎn)(1,f1))處的切線方程;

2)求函數(shù)fx)的單調(diào)遞減區(qū)間:

3)設(shè)函數(shù)gx=fx﹣x2+ax,a0,若xO,e]時(shí),gx)的最小值是3,求實(shí)數(shù)a的值.(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案