分別求滿足下列條件的直線方程:
(1)過點(0,1),且平行于l1:4x+2y-1=0的直線;
(2)與l2:x+y+1=0垂直,且與點P(-1,0)距離為
2
的直線.
考點:直線的一般式方程與直線的垂直關系,直線的一般式方程與直線的平行關系
專題:直線與圓
分析:(1)設直線方程為y=-2x+b,又直線過(0,-1),代入解得b即可得出.
(2)設直線方程為y=x+b,又
2
=
|-1-0+b|
2
,解出b即可得出.
解答: 解:(1)設直線方程為y=-2x+b,又直線過(0,-1),
代入可得-1=0+b,解得b=-1.
故直線方程為y=-2x-1.
(2)設直線方程為y=x+b,
2
=
|-1-0+b|
2
,
∴|b-1|=2,
解得b=3或b=-1,
∴直線方程為y=x+3或y=x-1.
點評:本題考查了相互平行與相互垂直的直線與斜率之間的關系、斜截式,考查了計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在曲線y=
1
1+x2
上求一點,使通過該點的切線平行于x軸,并求切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過A(1,1),B(4,-2)兩點,且圓心在直線y=-2x上.
(1)求圓C的方程;
(2)是否存在斜率為1的直線l,使l被圓C截得的弦EF,以EF為直徑的圓經(jīng)過原點O.若存在,寫出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}的前n項和為Sn,a3=3,S3=
3
0
2xdx,則公比q的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設圓的方程是x2+y2+2ax+2y+(a-1)2=0,0<a<1時原點與圓的位置關系是( 。
A、原點在圓上B、原點在圓外
C、原點在圓內(nèi)D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+ϕ)(ω是正整數(shù),0≤ϕ≤π)是R上的偶函數(shù),其圖象過點M(
4
,0),且在區(qū)間[0,
π
2
]上是單調(diào)函數(shù).
(1)求φ與ω的值;
(2)設a<
π
2
<b
,若f(x)在區(qū)間[a,b]上的最大值是M,最小值是m,且M-m=
1
2
,求a,b所要滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班共有50個同學,其中男同學30人,從這50個同學中選出3個同學去完成一項任務,要求男同學比女同學多,則不同的選派方法有( 。
A、C
 
3
50
-C
 
3
20
B、C
 
2
20
C
 
1
30
+
 
3
20
C、C
 
2
30
C
 
1
48
D、C
 
2
30
C
 
1
20
+C
 
3
30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lnx-6+2x的零點為x0,則x0∈( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(5,6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的各項按如下規(guī)律排列:
1
1
,
2
1
,
2
2
,
3
1
,
3
2
,
3
3
4
1
,
4
2
,
4
3
4
4
,…則a2012=
 

查看答案和解析>>

同步練習冊答案