20.如圖所示,點D 在線段AB 上,∠CAD=30°,∠CDB=50°.給出下列三組條件(給出線段的長度):
①AD,DB
②AC,DB
③CD,DB
其中,能使△ABC 唯一確定的條件的序號為①②③.(寫出所有所和要求的條件的序號)

分析 由已知及正弦定理可得$\frac{AD}{sin20°}=\frac{AC}{sin130°}=\frac{CD}{sin30°}$,結(jié)合余弦定理即可得解.

解答 解:∵∠CAD=30°,∠CDB=50°.
∴可得:∠ACD=20°,
∴在△ACD中,可得$\frac{AD}{sin20°}=\frac{AC}{sin130°}=\frac{CD}{sin30°}$,即給一邊,可求另外兩邊,進而利用正弦定理,余弦定理可求△ABC的各邊及角.
故答案為:①②③.

點評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩焦點與短軸一端點組成一正三角形三個頂點,若焦點到橢圓上點的最大距離為$3\sqrt{3}$,則分別以a,b為實半軸長和虛半軸長,焦點在y軸上的雙曲線標準方程為$\frac{{y}^{2}}{12}-\frac{{x}^{2}}{9}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖1,四邊形ABCD為正方形,延長DC至E,使得CE=2DC,將四邊形ABCD沿BC折起到A1BCD1的位置,使平面A1BCD1⊥平面BCE,如圖2.

(I)求證:CE⊥平面A1BCD1;
(II)求異面直線BD1與A1E所成角的大;
(III)求平面BCE與平面A1ED1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.昌平區(qū)在濱河公園舉辦中學生冬季越野賽.按年齡段將參賽學生分為A,B,C三個組,各組人數(shù)如下表所示.組委會用分層抽樣的方法從三個組中選出6名代表.
    組別AB    C
    人數(shù)100150    50
( I)  求A,B,C三個組各選出代表的個數(shù);
( II) 若從選出的6名代表中隨機抽出2人在越野賽閉幕式上發(fā)言,求這兩人來自同一組的概率P1;
( III)若從所有參賽的300名學生中隨機抽取2人在越野賽閉幕式上發(fā)言,設(shè)這兩人來自同一組的概率為P2,試判斷P1與P2的大小關(guān)系(不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,“A<30°”是“$sinA<\frac{1}{2}$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD 中,PD⊥底面ABCD,AB∥DC,CD=2AB,AD⊥CD,E為棱PD的中點.
(Ⅰ)求證:CD⊥AE;
(Ⅱ)求證:平面PAB⊥平面PAD;
(Ⅲ)試判斷PB與平面AEC是否平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知復數(shù)z滿足(1-i)z=2i,其中i為虛數(shù)單位,則z的模為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,AB為半圓O的直徑,D為弧BC的中點,E為BC的中點,求證:AB•BC=2AD•BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2},x>1}\\{\frac{1}{{2}^{x-1}},x≤1}\end{array}\right.$,則f(f($\sqrt{2}$))等于( 。
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

同步練習冊答案