【題目】已知函數(shù),,.
(1)當(dāng)時,求函數(shù)的極值;
(2)若在區(qū)間上存在不相等的實數(shù),使得成立,求的取值范圍;
(3)設(shè)的圖象為,的圖象為,若直線與分別交于,問是否存在整數(shù),使在處的切線與在處的切線互相平行,若存在,求出的所有值,若不存在,請說明理由.
【答案】(1)極大值為,無極小值;(2);(3).
【解析】
(1)對函數(shù)進行求導(dǎo),并求出方程的根為,判斷為函數(shù)的極大值點,再代入求極大值;
(2)問題轉(zhuǎn)化成函數(shù)在區(qū)間存在極值點;
(3)根據(jù)兩條切線互相平行,得到斜率相等,從而構(gòu)造出的方程,再從方程中把分離出來,構(gòu)造關(guān)于的函數(shù),研究函數(shù)的值域,得到的取值范圍后,再根據(jù)為整數(shù),求得的值.
(1)當(dāng)時,,,
當(dāng)時,得,當(dāng)時,得,
所以在單調(diào)遞增,在單調(diào)遞減,
所以,無極小值.
(2)令,則
,
由題意知在區(qū)間存在極值點,所以在有解,
所以在有解,
令,則,
當(dāng)時,恒成立,所以在單調(diào)遞增,且,
所以.
(3),則,
,則,
設(shè),,
在點處的切線的斜率,在點處的切線的斜率,
假設(shè)存在兩切線平行,所以,即在有解,
所以在有解,令,則,,
當(dāng)時,得;當(dāng)時,得,
所以在單調(diào)遞增,在單調(diào)遞減,
所以,
所以在恒成立,所以在單調(diào)遞減,
所以,則,又為整數(shù),
所以或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列是單調(diào)遞增數(shù)列,且與的等差中項為,與的等比中項為16,.
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)令,,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中a為常數(shù).
當(dāng)時,設(shè)函數(shù),判斷函數(shù)在上是增函數(shù)還是減函數(shù),并說明理由;
設(shè)函數(shù),若函數(shù)有且僅有一個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,求函數(shù)的極值;
(2)是否存在實數(shù),使得當(dāng)時,函數(shù)的最大值為?若存在,取實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;
(2)已知點,點,直線過點且曲線相交于,兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機構(gòu)數(shù)(個)與對應(yīng)年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機構(gòu)個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個數(shù)是( )
①公共圖書館業(yè)機構(gòu)數(shù)與年份的正相關(guān)性較強
②公共圖書館業(yè)機構(gòu)數(shù)平均每年增加13.743個
③可預(yù)測 2019 年公共圖書館業(yè)機構(gòu)數(shù)約為3192個
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)動圓P(圓心為P)經(jīng)過定點(0,2),被x軸截得的弦長為4,P的軌跡為曲線C
(1) 求C的方程
(2) 設(shè)不經(jīng)過坐標(biāo)原點O的直線l與C交于A、B兩點,O在以線段AB為直徑的圓上,求證:直線l經(jīng)過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖的空間幾何體中,四邊形為邊長為2的正方形,平面,,,且,.
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠C=,AC=BC,M、N分別是BC、AB的中點,將△BMN沿直線MN折起,使二面角B′﹣MN﹣B的大小為,則B'N與平面ABC所成角的正切值是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com