【題目】對數(shù)是簡化繁雜運算的產(chǎn)物.16世紀時,為了簡化數(shù)值計算,數(shù)學家希望將乘除法歸結(jié)為簡單的加減法.當時已經(jīng)有數(shù)學家發(fā)現(xiàn)這在某些情況下是可以實現(xiàn)的.
比如,利用以下2的次冪的對應(yīng)表可以方便地算出的值.
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
首先,在第二行找到16與256;然后找出它們在第一行對應(yīng)的數(shù),即4與8,并求它們的和,即12;最后在第一行中找到12,讀出其對應(yīng)的第二行中的數(shù)4096,這就是的值.
用類似的方法可以算出的值,首先,在第二行找到4096與128;然后找出它們在第一行對應(yīng)的數(shù),即12與7,并求它們的______;最后在第一行中找到______,讀出其對應(yīng)的第二行中的數(shù)______,這就是值.
【答案】差 5 32
【解析】
題設(shè)中給出的是第一行數(shù)的加法與第二行數(shù)的乘法的對應(yīng)關(guān)系,類比到所求的問題中就是第一行數(shù)的減法與第二行數(shù)的除法之間的對應(yīng)關(guān)系,從而可求規(guī)定的值.
題設(shè)中給出的計算方法是:
第一行數(shù)中兩數(shù)的和與與第二行數(shù)的對應(yīng)的兩數(shù)的乘積是匹配的,
因此,若在在第二行找到4096與128,要求它們的商,
可以找出它們在第一行對應(yīng)的數(shù),即12與7,它們的差(5)在第二行中對應(yīng)的數(shù)(32)即為.
故答案為:差,5,32.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面,已知,,,點是棱的中點.
(1)求證:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一點,使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面,,點為棱的中點.
(1)證明:;
(2)求直線與平面所成角的正弦值;
(3)若為棱上一點,滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設(shè)是橢圓的左焦點,直線:與軸交于點,為橢圓的長軸,已知,且,過點作斜率為直線與橢圓相交于不同的兩點 ,
(1)當時,線段的中點為,過作交軸于點,求;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,過曲線外的一點(其中,為銳角)作平行于的直線與曲線分別交于.
(Ⅰ) 寫出曲線和直線的普通方程(以極點為原點,極軸為 軸的正半軸建系);
(Ⅱ)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的頂點為坐標原點O,對稱軸為軸,其準線為.
(1)求拋物線C的方程;
(2)設(shè)直線,對任意的拋物線C上都存在四個點到直線l的距離為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(常數(shù)).
(1)當時,求曲線在處的切線方程;
(2)討論函數(shù)在區(qū)間上零點的個數(shù)(為自然對數(shù)的底數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com